• Title/Summary/Keyword: exterior measure condition

Search Result 9, Processing Time 0.024 seconds

A Study on the Modeling of Vertical Spread Fire of Exterior Panel by Fire Dynamic Simulation (FDS) (FDS를 이용한 외장재의 수직 확산 화재의 모델링에 관한 연구)

  • Min, Seh-Hong;Yoon, Jung-En
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • Considering heat insulation and beautiful sight of construction, making use of exterior panels is increasing. Recently the exterior panels now are weak very much, and so in consequence of the weakness fire spreads rapidly. Compared with internal fire, external vertical fire spread rate goes rapidly and it is extensive in spread range, therefore it is dangerous very much. Accordingly, under present condition of poor standard of exterior panels, it is required to take measure to meet the appropriate situation. In this study, by making use of FDS(Fire Dynamic Simulation) program about external vertical fire of high rise building, fire behavior is searched by computer. It is important that realizing by computer fire modeling about external vertical fire must be included certainly in procedure of fire performance design in the future. In modeling program, FDS version 5 is available, and aluminium composite panel is applied in external panels. In this study, for realizing of actual fire condition, FDS is applied by details of fire scenarios considering influence of wind.

A study on indoor environmental elements of the granite model dome in different envelope materials during summer season (하절기, 석재 모형돔의 외피 유형별 실내환경 요소에 관한 연구)

  • 공성훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.898-902
    • /
    • 1999
  • During summer season, the weather condition of Korea is hot and humid. So humidity elements are very important relating to building envelope condition. The purpose of this investigation is to measure and analyze characteristics of summer's environmental elements such as relative humidity, dry bulb temperature and air velocity in the clay/cement envelope materials using a granite dome model. According to the variation of exterior humidity, the state of interior relative humidity for clay model has an equal tendency, although a little range of variation is shown in comparison to the cement model.

  • PDF

ON SOME UNBOUNDED DOMAINS FOR A MAXIMUM PRINCIPLE

  • CHO, SUNGWON
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In this paper, we study some characterizations of unbounded domains. Among these, so-called G-domain is introduced by Cabre for the Aleksandrov-Bakelman-Pucci maximum principle of second order linear elliptic operator in a non-divergence form. This domain is generalized to wG-domain by Vitolo for the maximum principle of an unbounded domain, which contains G-domain. We study the properties of these domains and compare some other characterizations. We prove that sA-domain is wG-domain, but using the Cantor set, we are able to construct a example which is wG-domain but not sA-domain.

A Study of Quality Improvement of the Exterior Inspection Using Tunnel Scanning System (터널스캐닝 시스템을 이용한 외관조사 품질개선에 관한 연구)

  • Jee Kee-Hwan;Chung Jae-Min;Hong Sa-Jang;Kim Su-Un
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.234-239
    • /
    • 2004
  • Recently, the tunnel structures are increasing. And the tunnels are to be large diameter tunnel and long. Therefore, inspection, repair, and maintenance of tunnels are an extremely important part of infrastructure management, with particular technical and safety considerations arising from the very nature of underground construction. To inspect surface state of tunnels, concrete structures, it must generally use method of conventional visual inspection, but this method is very not objective. To measure the width, length, position, direction of a crack, it is very difficult, when the tunnel is long span and high rise. Thus, to make up for this demerits, in this paper is proposed the Tunnel Scanning System that we can check conditions of the tunnel structures quickly, detect the detailed data objectively, count automatically the width of a crack by the original software and follow the trend of long tenn changes in the condition of a tunnel.

  • PDF

Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials (철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정)

  • Yu S.J.;Kim J.H;Park J.S.;Kwon D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

The sound insulation performance of eco-friendly loess brick wall (친환경 황토벽체의 차음성능 평가에 관한 연구)

  • Lee, Tai-Gang;Kim, Yul;Song, Kook-Gon;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.13-18
    • /
    • 2009
  • Korean traditional houses have been developed in harmony with natural environment and comfortable indoor condition by using the natural resources including building layout, space composition and materials. Originally Korea traditional architectures have used wood lintel constructions and loess walls through the many years. Theses loess have many strength such as highly heat capacity, controling of humidity, a deodorant than any other materials. Nowaday it is recommended to use exterior and interior walls in loess wall to meet the eco-friendly materials to improve our residental environmental. Thus this study aims to research the sound insulation performance of traditional loess brick wall varied with thickness, thermal insulation materials and cavity wall. The sound insulation performance of these loess walls are compared with other masonry wall's and sound insulation performance of th walls were tested in anechoic laboratory to measure the sound transmission loss of these walls. The loess brick wall with 75mm thickness of cavity is shown the sound insulation performance with Rw 57 which is nearly same performances of 1B brick wall and cement 8' block wall, The improving effect of insulation materials is shown in the high frequency bandwidth. Especially, there is improving as much as 11 dB using the extruded poly stylene form(75mm) and poly ethylene film(0.7mm).

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Biological Roles of the Glycan in the Investigation of the Novel Disease Diagnosis and Treatment Methods (신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1379-1385
    • /
    • 2018
  • Glycans are attached to proteins as in glycoproteins and proteoglycans. They are found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotic cells but may also be found in prokaryotes. The interaction of cell surface glycans with complementary glycan binding proteins located on neighboring cells, other cell types, pathogens like virus, or bacteria is crucial in biologically and biomedically important processes like pathogen recognition, cell migration, cell-cell adhesion, development, and infection. Their implication in pathological condition, suggests an important role for glycans as disease markers. In addition, a great amount of research has been shown that appropriate glycosylation of a recombinant therapeutic protein is critical for product solubility, stability, pharmacokinetics and pharmacodynamics, bioactivity, and safety. Besides, cancer-associated glycosylation changes often involve sialic acid in glycan branch which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the glycan's biological function and describing the relevance among the glycosylation, disease diagnosis and treatment methods. Furthermore, the high-throughput analytic methods available to measure the profile changing patterns of glycan in the blood serum as well as possible underlying biochemical mechanisms.