• Title/Summary/Keyword: exterior beam-column joints

Search Result 111, Processing Time 0.025 seconds

Retrofitting of exterior RC beam-column joints using ferrocement jackets

  • Bansal, Prem Pal;Kumar, Maneek;Dar, Manzoor Ahmed
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.313-328
    • /
    • 2016
  • Beam-column joints are recognized as one of the most critical and vulnerable zones of a Reinforced Concrete (RC) moment resisting structure subjected to seismic loads. The performance of the deficient beam-column joints can be improved by retrofitting these joints by jacketing them with varied materials like concrete, steel, FRP and ferrocement. In the present study strength behavior of RCC exterior beam-column joints, initially loaded to a prefixed percentage of the ultimate load, and retrofitted using ferrocement jacketing using two different wrapping schemes has been studied and presented. In retrofitting scheme, RS-I, wire mesh is provided in L shape at top and at bottom of the beam-column joint, whereas, in scheme RS-II along with wire mesh in L shape at top and bottom wire mesh is also provided diagonally to the joint. The results of these retrofitted beam-column joints have been compared with those of the controlled joint specimens. The results show an improvement in the ultimate load carrying capacity and yield load of the retrofitted specimens. However, no improvement in the ductility and energy absorption has been observed.

An Experimental Study on the Effects of Steel Fibers used at R/C Exterior Joints (철근 콘크리트 보-기둥 외측 접합부에 적용된 강섬유의 효과에 관한 실험연구)

  • Choi, Ki-Bong;Oh, Jong-Han;Kim, Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.188-193
    • /
    • 1998
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of lateral confinement and fiber reinforcement of joint area were investigated. It was concluded ; (1) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by pull-out of hooked bars; and (2) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers. Application of steel fibers to exterior joints seems to be an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in exterior beam-column connections.

  • PDF

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

Seismic behavior evaluation of exterior beam-column joints with headed or hooked bars using nonlinear finite element analysis

  • Rajagopal, S.;Prabavathy, S.;Kang, Thomas H.K.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.861-875
    • /
    • 2014
  • This paper studies the response of seismic behavior of reinforced concrete exterior beam-column joints under reversal loading with different anchorages and joint core details. The joint core was detailed without much confinement (group-I) and/or with proposed X-cross bars in the core (group-II). The beam longitudinal reinforcement's anchorages were designed as per ACI 352 (headed bars), ACI 318 (conventional $90^{\circ}$ bent hooks) and IS 456 ($90^{\circ}$ bent hooks with extended tails). The nonlinear finite element analysis response of the beam-column joints was studied, along with initial and progressive cracks up to failure. The experimental and analytical results were compared and presented in this paper to make more scientific conclusions.

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.

Stud reinforcement in beam-column joints under seismic loads

  • Abdollahzadeh, Gholamreza;Ghalani, Saeed Eilbeigi
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.297-317
    • /
    • 2016
  • Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints that causes significant bar congestion. Increase in congestion of shear reinforcement in joint core (connection zone), leads to increase accomplishment problems. The congestion may also lead to diameter limitations on the beam bars relative to the joint dimensions. Using double headed studs instead of conventional closed hoops in reinforced concrete beam-column joints reduces congestion and ensures easier assembly of the reinforcing cage. The purpose of this research is evaluating the efficiency of the proposed reinforcement. In this way, 10 groups of exterior beam-column joints are modeled. Each group includes 7 specimens by different reinforcing details in their joint core. All specimens are modeled by using of ABAQUS and analyzed subjected to cyclic loading. After verification of analytical modeling with an experimental specimen, 3D nonlinear specimens are modeled and analyzed. Then, the effect of amount and arrangement of headed studs on ductility, performance, ultimate strength and energy absorption has been studied. Based on the results, all joints reinforced with double headed studs represent better performance compared with the joints without shear transverse reinforcement in joints core. The behavior of the former is close to joints reinforced with closed hoops and cross ties according to the seismic design codes. By adjusting the arrangement of double-headed studs, the decrease in ductility, performance, ultimate moment resistant and energy absorption reduce to 2.61%, 0.90%, 0.90% and 1.66% respectively compared with the joints reinforced by closed hoops on the average. Since the use of headed studs reduces accomplishment problems, these amounts are negligible. Therefore, use of double-headed studs has proved to be a viable option for reinforcing exterior beam-column joints.

Seismic Experiment of Precast Concrete Exterior Beam-Column Joint Using Bolt Type Connection and Prestressing Method (볼트 접합 및 프리스트레스를 적용한 프리캐스트 콘크리트 보-기둥 외부접합부의 내진실험)

  • Lee, Dong-Joo;Lee, Ju-Dong;Oh, Tae-Soo;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • In this study, experimental research was carried out to investigate the seismic and structural performance of precast concrete exterior beam-column joints using bolt type connection and prestressing method. A total of five full-scale exterior beam-column joints were constructed and tested under reversed cyclic loading, controlled by displacement. Results of the test are as follows: Energy dissipation capacity and pinching phenomenon of PC beam-column joints showed disadvantageous behavior compared to RC beam-column joints. However, drift capacity of the PC joint was excellent. Also, yield mechanism concentrated on embedded nuts was suitable as an exterior beam-column joint of lateral load resistance frame. Additional application of prestressing method was also very effective to control excessive pinching and cracking in the joint region, and thus improved an overall seismic performance of the PC joint.

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.