• Title/Summary/Keyword: extended geometric process

Search Result 20, Processing Time 0.024 seconds

Three extended geometric process models for modeling reliability deterioration and improvement

  • Jiang, R.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.1
    • /
    • pp.49-60
    • /
    • 2011
  • The geometric process (GP) has been widely used for modeling failure and repair time sequences of repairable systems. The GP is mathematically tractable but restrictive in reliability applications since it actually assumes that the mean function of inter-failure times sequence asymptotically decreases to zero; and the mean function of successive repair times sequence asymptotically increases to infinity. This is generally unrealistic from an engineering perspective. This paper presents three extended GP models for modeling reliability deterioration and improvement (or growth) process. The extensions maintain the advantage of mathematical tractability of GP model. Their usefulness and appropriateness are illustrated with three real-world examples.

  • PDF

On some basic propeties of the inhomogeneous quasi-birth-and-death process

  • Rhee, Kyung-Hyune;C.E.M.Pearce
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.177-192
    • /
    • 1997
  • The basic theory of the quasi-birth-and-death process is extended to a process which is inhomogeous in levels. Several key results in the standard homogeneous theory hold in a more general context than that usually stated, in particular not requiring positive recurrence. Theser results are subsumed under our development. The treatment is entirely probabilistic.

  • PDF

On the Geometric Anisotropy Inherent In Spatial Data (공간자료의 기하학적 비등방성 연구)

  • Go, Hye Ji;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.755-771
    • /
    • 2014
  • Isotropy is one of the main assumptions for the ease of spatial prediction (named kriging) based on some covariance models. A lack of isotropy (or anisotropy) in a spatial process necessitates that some additional parameters (angle and ratio) for anisotropic covariance model be obtained in order to produce a more reliable prediction. In this paper, we propose a new class of geometrically extended anisotropic covariance models expressed as a weighted average of some geometrically anisotropic models. The maximum likelihood estimation method is taken into account to estimate the parameters of our interest. We evaluate the performances of our proposal and compare it with an isotropic covariance model and a geometrically anisotropic model in simulation studies. We also employ extended geometric anisotropy to the analysis of real data.

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

A feature data model in milling process planning (밀링 공정설계의 특징형상 데이터 모델)

  • Lee, Choong-Soo;Rho, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.209-216
    • /
    • 1997
  • A feature is well known as a medium to integrate CAD, CAPP and CAM systems. For a part drawing including both simple geometry and compound geometry, a process plan such as the selection of process, machine tool, cutting tool etc. normally needs simple geometry data and non-geometry data of the feature as the input. However, a extended process plan such as the generation of process sequence, operation sequence, jig & fixture, NC program etc. necessarily needs the compound geometry data as well as the simple geometry data and non-geometry data. In this paper, we propose a feature data model according to the result of analyzing necessary data, including the compound geometry data, the simple geometry data and the non-geometry data. Also, an example of the feature data model in milling process planning is described.

Material feature representation and identification with composite surfacelets

  • Huang, Wei;Wang, Yan;Rosen, David W.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.370-384
    • /
    • 2016
  • Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.

Generation of 2-D Parametric Surfaces with Highly Irregular Boundaries

  • Sarkar, Subhajit;Dey, Partha Pratim
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • The conventional methods of boundary-conformed 2D surfaces generation usually yield some problems. This paper deals with two boundary-conformed 2D surface generation methods, one conventional approach, the linear Coons method, and a new method, boundary-conformed interpolation. In this new method, unidirectional 2D surface has been generated using some of the geometric properties of the given boundary curves. A method of simultaneous displacement of the interpolated curves from the opposite boundaries has been adopted. The geometric properties considered for displacements include weighted combination of angle bisector and linear displacement vectors at all the data-points of the two opposite generating curves. The algorithm has one adjustable parameter that controls the characteristics of transformation of one set of curves from its parents. This unidirectional process has been extended to bi-directional parameterization by superimposing two sets of unidirectional curves generated from both boundary pairs. Case studies show that this algorithm gives reasonably smooth transformation of the boundaries. This algorithm is more robust than the linear Coons method and capable of resolving the 2D boundary-conformed parameterization problems.

On the design of a teaching unit for the exploration of number patterns in Pascal graphs and triangles applying theoretical generalization. (이론적 일반화를 적용한 파스칼 그래프와 삼각형에 내재된 수의 패턴 탐구를 위한 교수단원의 설계)

  • Kim, Jin Hwan
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.209-229
    • /
    • 2024
  • In this study, we design a teaching unit that constructs Pascal graphs and extended Pascal triangles to explore number patterns inherent in them. This teaching unit is designed to consider the diachronic process of teaching-learning by combining Dörfler's theoretical generalization model with Wittmann's design science ideas, which are applied to the didactical practice of mathematization. In the teaching unit, considering the teaching-learning level of prospective teachers who studied discrete mathematics, we generalize the well-known Pascal triangle and its number patterns to extended Pascal triangles which have directed graphs(called Pascal graphs) as geometric models. In this process, the use of symbols and the introduction of variables are exhibited as important means of generalization. It provides practical experiences of mathematization to prospective teachers by going through various steps of the generalization process targeting symbols. This study reflects Wittmann's intention in that well-understood mathematics and the context of the first type of empirical research as structure-genetic didactical analysis are considered in the design of the learning environment.

Enhanced Mesh Simplification using Extended Quadric Error Metric (확장된 이차오차 척도를 이용한 개선된 메쉬 간략화)

  • Han Tae-hwa;Chun Jun-chul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.365-372
    • /
    • 2004
  • Recently, the studies for mesh simplification have been increased according to the application area of the complicate 3D mesh models has been expanded. This paper introduces a novel method for mesh simplification which uses the properties of the mesh model in addition to the geometric locations of the model. The information of the 3D mesh model Includes surface properties such as color, texture, and curvature information as well as geometic information of the model. The most of current simplification methods adopt such geometric information and surface properties individually for mesh simplification. However, the proposed simplification method combines the geometric information and solace properties and applies them to the simplification process simultaneously. In this paper, we exploit the extended geometry based quadric error metric(QEM) which relatively allows fast and accurate geometric simplification of mesh. Thus, the proposed mesh simplification utilizes the quadric error metric based on geometric information and the surface properties such as color, normal, and texture. The proposed mesh simplification method can be expressed as a simple quadric equation which expands the quadric error metric based on geometric information by adding surface properties such as color, normal, and texture. From the experimental results, the simplification of the mesh model based on the proposed method shows the high fidelity to original model in some respects such as global appearance rather than using current geometry based simplification.

Application to the Stochastic Modelling of Risk Measurement in Bunker Price and Foreign Exchange Rate on the Maritime Industry (확률변동성 모형을 적용한 해운산업의 벙커가격과 환율 리스크 추정)

  • Kim, Hyunsok
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • This study empirically examines simple methodology to quantify the risk resulted from the uncertainty of bunker price and foreign exchange rate, which cause main resources of the cost in shipping industry during the periods between $1^{st}$ of January 2010 and $31^{st}$ of January 2018. To shed light on the risk measurement in cash flows we tested GBM(Geometric Brownian Motion) frameworks such as the model with conditional heteroskedasticity and jump diffusion process. The main contribution based on empirical results are summarized as following three: first, the risk analysis, which is dependent on a single variable such as freight yield, is extended to analyze the effects of multiple factors such as bunker price and exchange rate return volatility. Second, at the individual firm level, the need for risk management in bunker price and exchange rate is presented as cash flow. Finally, based on the scale of the risk presented by the analysis results, the shipping companies are required that there is a need to consider what is appropriate as a means of risk management.