• Title/Summary/Keyword: extended data expression

Search Result 52, Processing Time 0.026 seconds

A New Incremental Learning Algorithm with Probabilistic Weights Using Extended Data Expression

  • Yang, Kwangmo;Kolesnikova, Anastasiya;Lee, Won Don
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.258-267
    • /
    • 2013
  • New incremental learning algorithm using extended data expression, based on probabilistic compounding, is presented in this paper. Incremental learning algorithm generates an ensemble of weak classifiers and compounds these classifiers to a strong classifier, using a weighted majority voting, to improve classification performance. We introduce new probabilistic weighted majority voting founded on extended data expression. In this case class distribution of the output is used to compound classifiers. UChoo, a decision tree classifier for extended data expression, is used as a base classifier, as it allows obtaining extended output expression that defines class distribution of the output. Extended data expression and UChoo classifier are powerful techniques in classification and rule refinement problem. In this paper extended data expression is applied to obtain probabilistic results with probabilistic majority voting. To show performance advantages, new algorithm is compared with Learn++, an incremental ensemble-based algorithm.

Application Examples Applying Extended Data Expression Technique to Classification Problems (패턴 분류 문제에 확장된 데이터 표현 기법을 적용한 응용 사례)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.9-15
    • /
    • 2018
  • The main goal of extended data expression is to develop a data structure suitable for common problems in ubiquitous environments. The greatest feature of this method is that the attribute values can be represented with probability. The next feature is that each event in the training data has a weight value that represents its importance. After this data structure has been developed, an algorithm has been devised that can learn it. In the meantime, this algorithm has been applied to various problems in various fields to obtain good results. This paper first introduces the extended data expression technique, UChoo, and rule refinement method, which are the theoretical basis. Next, this paper introduces some examples of application areas such as rule refinement, missing data processing, BEWS problem, and ensemble system.

Biological Early Warning Systems using UChoo Algorithm (UChoo 알고리즘을 이용한 생물 조기 경보 시스템)

  • Lee, Jong-Chan;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 2012
  • This paper proposes a method to implement biological early warning systems(BEWS). This system generates periodically data event using a monitoring daemon and it extracts the feature parameters from this data sets. The feature parameters are derived with 6 variables, x/y coordinates, distance, absolute distance, angle, and fractal dimension. Specially by using the fractal dimension theory, the proposed algorithm define the input features represent the organism characteristics in non-toxic or toxic environment. And to find a moderate algorithm for learning the extracted feature data, the system uses an extended learning algorithm(UChoo) popularly used in machine learning. And this algorithm includes a learning method with the extended data expression to overcome the BEWS environment which the feature sets added periodically by a monitoring daemon. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression. Experimental results show that the proposed BEWS is available for environmental toxicity detection.

Biological Early Warning System for Toxicity Detection (독성 감지를 위한 생물 조기 경보 시스템)

  • Kim, Sung-Yong;Kwon, Ki-Yong;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1979-1986
    • /
    • 2010
  • Biological early warning system detects toxicity by looking at behavior of organisms in water. The system uses classifier for judgement about existence and amount of toxicity in water. Boosting algorithm is one of possible application method for improving performance in a classifier. Boosting repetitively change training example set by focusing on difficult examples in basic classifier. As a result, prediction performance is improved for the events which are difficult to classify, but the information contained in the events which can be easily classified are discarded. In this paper, an incremental learning method to overcome this shortcoming is proposed by using the extended data expression. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression by exploiting the necessary information not only from the well classified, but also from the weakly classified events. Experimental results show that the new algorithm outperforms the former Learn++ method without using the weight parameter.

Research on Aesthetic Characteristics of Fabric Expression Technique of Art to Wear - Focusing on Art to Wear artists in the U.S.A. -

  • Jin, Kyung-Ok
    • Journal of Fashion Business
    • /
    • v.11 no.3
    • /
    • pp.133-151
    • /
    • 2007
  • The role of fabric now directly related with the expression of the beauty of clothing and it provides new and creative ideas. This study was aimed at reviewing basic data that can be used in systematic design development through fabric expression for today's fashion designers who must study unique, original fashion design development. For systematic development of design technique through fabric expression, fabric expression methods and characteristics, aesthetic characteristics and fabric design of 'art to wear' were reviewed and the results are as follows. First, the highly wrought fabric expression of art to wear was confirmed to be comprehending a message within itself. Second, aesthetic characteristics of fabric expression used in art to wear can be classified as decorativeness, extensity, 2-D pictorialness, handicraft, compounding and rearrangement, and 3-D characteristics. Third, the 6 aesthetic characteristics have unique design features and aesthetic categories. The understanding the fabric expression techniques through study on the classification of the fabric expression in 'art to wear' is expected to be extended to proposition of creative direction and inspiration of modern fashion.

Refining Rules of Decision Tree Using Extended Data Expression (확장형 데이터 표현을 이용하는 이진트리의 룰 개선)

  • Jeon, Hae Sook;Lee, Won Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1283-1293
    • /
    • 2014
  • In ubiquitous environment, data are changing rapidly and new data is coming as times passes. And sometimes all of the past data will be lost if there is not sufficient space in memory. Therefore, there is a need to make rules and combine it with new data not to lose all the past data or to deal with large amounts of data. In making decision trees and extracting rules, the weight of each of rules is generally determined by the total number of the class at leaf. The computational problem of finding a minimum finite state acceptor compatible with given data is NP-hard. We assume that rules extracted are not correct and may have the loss of some information. Because of this precondition. this paper presents a new approach for refining rules. It controls their weight of rules of previous knowledge or data. In solving rule refinement, this paper tries to make a variety of rules with pruning method with majority and minority properties, control weight of each of rules and observe the change of performances. In this paper, the decision tree classifier with extended data expression having static weight is used for this proposed study. Experiments show that performances conducted with a new policy of refining rules may get better.

A Note on a New Two-Parameter Lifetime Distribution with Bathtub-Shaped Failure Rate Function

  • Wang, F.K.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2002
  • This paper presents the methodology for obtaining point and interval estimating of the parameters of a new two-parameter distribution with multiple-censored and singly censored data (Type-I censoring or Type-II censoring) as well as complete data, using the maximum likelihood method. The basis is the likelihood expression for multiple-censored data. Furthermore, this model can be extended to a three-parameter distribution that is added a scale parameter. Then, the parameter estimation can be obtained by the graphical estimation on probability plot.

  • PDF

Prediction of Pain Expression Using the Extended Gate Control Theory of Pain and Fishbein′s Model (관문통제동통이론과 FISHBEIN의 모델을 이용한 동통표현 예견에 대한 연구)

  • 이은옥
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.2
    • /
    • pp.1-21
    • /
    • 1983
  • The purposes of this study were to(a) develop theoretical modifications of the extended gate control theory of pain using Fishbein's model and(b) test the efficacy of these modifications. Attitude, social subjective norm, personal subjective norm, habit and state anxiety were operationalized to represent internal stimuli for the cognitive-evaluative and motivational-affective dimensions of the theory. Pain expression was operationalized as sensory and affective responses to pain, and pain endurance. Sixty-two female nurses from 20 to 50 years of age participated. A semantic differential scale measured attitude and motivations to comply; a Likerty-type scale measured personal and social norms and habit. Spielberger's STAI measured state anxiety, Pain was produced using a modified submaximum effort tourniquet technique. Pair expression was measured using ratio scales of sensory intensity and unpleasantness developed by Gracely and his associates. Pain endurance was measured by subtracting time of pain threshold from pain tolerance. The first hypothesis examining whether pain endurance would be more significantly related to the affective response than to the sensory response was net rejected. Four remaining hypotheses, testing the ability of the five variables to predict the sensory and affective responses were not rejected. However, the habit of pain expression and the attitude toward pain expression contributed to the prediction of both sensory and affective responses to pain. The interaction between the cognitive-evaluative and the sensory-discriminative dimensions and the interaction between the cognitive-evaluative and motivational-affective dimensions were partially supported by the data from these two variables. The interaction between the motivational-affective and the sensory-discriminative dimensions was also supported by the relationship of sensory to affective responses. The variables which did not significantly predict pain expression appeared to have potential for prediction. Revision and testing of the tools for better reliability, validity, and clinical usuability are needed. The study contributed to theory building. The identification of variables which pre-dict pain behavior must occur before effective nursing interventions can be developed.

  • PDF

Multi-Path Index Scheme for the Efficient Retrieval of XML Data (XML 데이타의 효과적인 검색을 이한 다중 경로 인덱스)

  • Song, Ha-Joo;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.1
    • /
    • pp.12-23
    • /
    • 2001
  • Extended path expressions are used to denote multiple paths concisely by using '$\ast$' character. They are convenient for expressing OQL queries to retrieve XML data stored in OODBs. In this paper, we propose a multi-path index scheme as a new index scheme to efficiently process queries with extended path expressions. Our proposed index scheme allocates a unique path identifier for every possible single path in an extended path expression and provides functionalities of both a single path indexing and multiple path indexing through the composition of index key and path identifier while using only a index structure. The proposed index scheme provides better performance than single-path index schemes, and is practical since it can be implemented by little modification of leaf records of a B+-tree index.

  • PDF

Research on Railway Safety Common Data Model and DDS Topic for Real-time Railway Safety Data Transmission

  • Park, Yunjung;Kim, Sang Ahm
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • In this paper, we propose the design of railway safety common data model to provide common transformation method for collecting data from railway facility fields to Real-time railway safety monitoring and control system. This common data model is divided into five abstract sub-models according to the characteristics of data such as 'StateInfoMessage', 'ControlMessage', 'RequestMessage', 'ResponseMessage' and 'ExtendedXXXMessage'. This kind of model structure allows diverse heterogeneous data acquisitions and its common conversion method to DDS (Data Distribution Service) format to share data to the sub-systems of Real-time railway safety monitoring and control system. This paper contains the design of common data model and its DDS Topic expression for DDS communication, and presents two kinds of data transformation case studied for verification of the model design.