• Title/Summary/Keyword: expressway type

Search Result 108, Processing Time 0.023 seconds

A Study on the Safety of Passing-type Climbing Lanes in Expressways using C-G Method (비교그룹방법을 이용한 고속도로 추월차로형 오르막차로 안전성 연구)

  • Kim, Bong Soo;Kim, Sang-Gu;Yun, Ilsoo;Oh, Young-Tae;Hong, Doo-Pyo;Lee, Kang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.99-109
    • /
    • 2014
  • PURPOSES : Climbing lanes on expressways managed by the Korea Expressway Corporation (KEC) have been hot potatoes due to conflicts between slow-moving vehicles such as trucks and other vehicles at the merging section as well as the less popularity with the slow-moving vehicles. In order to resolve such problems, KEC has altered existing climbing lanes to passing-type climbing lanes in 1999. The new type of climbing lanes showed an apparent improvement in mobility. For example, the speeds of vehicles using both climbing lane and other lanes improved a lot. However, there has been no clear evidence about improved safety. METHODS : This research effort was initiated to evaluate the safety of the new passing-type climbing lanes using the comparison-group(CG) method based on three-year-long traffic accident data sets before and after the change, respectively. RESULTS : The passing-type climbing lanes showed twice increased traffic accidents even though the traffic accidents on old type climbing lanes increased 1.1% during the same periods. In addition, in-depth study, the merging area of the passing-type climbing lanes was found out to be the weakest section where 43.8% traffic accidents out of total traffic accidents happened. It is noted that the merging area of the old type climbing showed only 25.0% traffic accidents. CONCLUSIONS : The new passing-type climbing lanes were found to be weak in terms of safety when compared with the old type climbing lanes. Especially, the merging area should be improved to reduce the risk of traffic conflicts between slow-moving vehicles and other vehicles.

A Numerical Analysis of Tolerable Settlement for Bridges (수치해석에 의한 중소형교량 교량기초의 허용침하량 평가)

  • Jung, Gyung-Ja;Jeon, Kyung-Soo;Cho, Jun-Sang;Lee, Sang-Heon;Byun, Hyung-Kyoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

An Analysis of Accidents in the Expressway Structure Construction (고속도로 구조물공사의 안전사고 특성분석)

  • Huh, Woon-Chan;Kim, Young-Ai;Hwang, Uk-Sun;Kim, Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The expressway construction work is being recently diversified even the working environments and the working kinds due to getting large scale, complexity, and high technology. The accidents are increasing according to large scale even in construction equipment and to a rise in high-ground work, thereby being required an effort of reducing accidents. However, it is insufficient in a means of coping with the technically safety management of using specific and scientific method. In order to prevent accident, a specific plan is needed that can apply each in variables to safety management by analyzing the accident types and accident factors with statistical method. Accordingly, this study carried out investigate on accidents for 12 years in the expressway construction work, and aimed to analyze characteristics on the accident type and conversion disaster-victim number according to factors with occurrence of accidents. Thus, the empirical analysis was performed. As a result of research, first, as a result of verifying significant difference with accident type by accident factor, the significant difference was shown between a cause for occurrence of accident and height with occurrence of accident. Second, among factors by period, the time with occurrence of accident was indicated to have significant difference from conversion disaster-victim number. Among factors by work condition, the cause for occurrence of accident, the height with occurrence of accident, and the type with occurrence of accident were indicated to have significant difference from conversion disaster-victim number. What suggested by analyzing characteristics in these factors and variables has important significance as a countermeasure for safety management.

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Rock Slope Monitoring using Acoustic Emission (미소파괴음을 이용한 절토사면계측)

  • Jang, Hyun-Ick;Kim, Jin-Kwang;Kim, Chan-Woo;Kim, Kyung-Suk;Cheon, Dae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.743-748
    • /
    • 2010
  • The stability forecasting of rock slope is more difficult than soil slope because catching the sign of failure in monitoring is not easy and deformation of the rock is small in failure process. But in the rock slope, there is small deformation like crack propagation in rock itself and it accumulates gradually in failure process. If it is possible to detect the small change in the rock slope, we can know the failure time exactly. Because the individual signal is gathered in the acoustic emission monitoring, it is possible to monitoring the slope if many sound signal is accumulated. Detection test of acoustic emission was performed. Uniaxial, two types of bending test, and two plane shear test were done with various cement paste sample. Wave propagation velocity of uniaxial test sample was increased with curing time. Wave Analysis give us the result that there is a AE sign signal before the failure, the AE count is suddenly increased. And frequency level 125kHz before failure is changed to level 200-250kHz after failure. In two plane shear test we can catch the AE signal and can know the failure type from wave shape. Monitoring test site is tunnel slope in Hongcheon but special signal is not collected.

  • PDF

Study on Crossing Tendencies of Birds by Road Type for Validation of Wildlife Crossing Structures Targeting Avian Species

  • Song, Eui-Geun;Lee, Hwa-Su;Park, Hee-Bok;Woo, Dong-Gul;Park, Tae-Jin;Chun, Su-Won;Sim, Seung-Woo;Cha, Hyoun-Gi;Lim, Anya;Choi, Tae-Young
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.136-141
    • /
    • 2018
  • The purpose of this study is to compare the bird crossing of roads by type (Expressway 1, railroad-provincial road and Highway 4) and the crossing of roads according to the size of birds. The greatest number of avian species and individuals crossing road per 10 minutes were found on railroad-provincial road ($8.96{\pm}1.92$ and $29.33{\pm}11.94$, respectively), while the lowest number of avian species and individuals were found on Expressway 1 ($2.96{\pm}1.04$ and $6.13{\pm}2.89$, respectively), which has the widest width. In addition, the number of small-sized bird (<20 cm) crossing the Expressway 1, railroad-provincial road, and Highway 4 was lower than that of the medium-sized bird (${\geq}20cm$). Current wildlife crossing structures have been focused on mammals, amphibians and reptiles, but future structures should also consider birds.

Algorithm for Freight Transportation Performance Estimation on Expressway Using TCS and WIM Data (TCS 및 WIM 데이터를 활용한 고속도로 화물수송실적 산정 알고리즘 개발)

  • Youjeong Kang;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.116-130
    • /
    • 2023
  • Expressways play pivotal roles in cargo transportation because of their superior accessibility and mobility compared to rail and air. On the other hand, there is a limit to the accurate calculation of cargo transportation performance using existing highways owing to the mixture of vehicle types and difficulty in identifying cargo loads of individual cargo vehicles. This paper presents an algorithm for calculating more reliable cargo transportation performance using big data. The traffic performance (veh·km/day) was derived using the data collected from Toll Collecting System. The average tolerance weight for each vehicle type and the cargo load unit (ton/unit) considering it was calculated using vehicle specification information data and high-speed and low-speed axis data. This study calculated the cargo transportation performance by section and type using various online integrated highway data and presented a method for calculating the transportation performance by linking open business offices and private highways.

Comparisons of Traffic Collisions between Expressways and Rural Roads in Truck Drivers

  • Lee, Sangbok;Jeong, Byung Yong
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • Background: Truck driving is known as one of the occupations with the highest accident rate. This study investigates the characteristics of traffic collisions according to road types (expressway and rural road). Methods: Classifying 267 accidents into expressway and rural road, we analyzed them based on driver characteristics (age, working experience, size of employment), time characteristics (day of accident, time, weather), and accident characteristics (accident causes, accident locations, accident types, driving conditions). Results: When we compared the accidents by road conditions, no differences were found between the driver characteristics. However, from the accident characteristics, the injured person distributions were different by the road conditions. In particular, driving while drowsy is shown to be highly related with the accident characteristics. Conclusion: This study can be used as a guideline and a base line to develop a plan of action to prevent traffic accidents. It can also help to prepare formal regulations about a truck driver's vehicle maintenance and driving attitude for a precaution on road accidents.

Evaluation of abutment types on highway in terms on driving comfort

  • Nam, Moon S.;Park, Min-Cheol;Do, Jong-Nam
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.43-61
    • /
    • 2017
  • The inverted T-type abutments are generally used in highway bridges constructed in Korea. This type of abutment is used because it has greater stability, with more pile foundations embedded in the bedrock, while simultaneously providing support for lateral earth pressure and vertical loads of superstructures. However, the cross section of inverted T-type abutments is large compared with the piers, which makes them more expensive. In addition, a differential settlement between the abutment and embankment, as well as the expansion joints, causes driving discomfort. This study evaluated the driving comfort of several types of abutments to improve driving comfort on the abutment. To achieve this objective, a traditional T-type abutment and three types of candidate abutments, namely, mechanically stabilized earth wall (MSEW) abutment supported by a shallow foundation (called "true MSEW abutment"), MSEW abutment supported by piles (called "mixed MSEW abutment"), and pile bent and integral abutment with MSEW (called "MIP abutment"), were selected to consider their design and economic feasibility. Finite element analysis was performed using the design section of the candidate abutments. Subsequently, the settlements of each candidate abutment, approach slabs, and paved surfaces of the bridges were reviewed. Finally, the driving comfort on each candidate abutment was evaluated using a vehicle dynamic simulation. The true MSEW abutment demonstrated the most excellent driving comfort. However, this abutment can cause problems with respect to serviceability and maintenance due to excessive settlements. After our overall review, we determined that the mixed MSEW and the MIP abutments are the most appropriate abutment types to improve driving comfort by taking the highway conditions in Korea into consideration.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF