• 제목/요약/키워드: exposure time and temperature

검색결과 501건 처리시간 0.027초

FRP 보강근의 계면전단강도에 대한 임계온도와 노출시간의 영향 (Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars)

  • 문도영
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.45-51
    • /
    • 2013
  • 고온에 노출된 GFRP와 CFRP 보강근의 단지간보 실험을 통해 계면전단강도를 측정하였다. 1차 실험으로서, 노출시간과 온도를 변수로 하였으며, 적용된 고온 조건하에서 강도의 변화를 고찰하였으다. 1차 실험의 결과로부터 두가지 보강근에 대하여 임계온도가 $270^{\circ}C$로 동일한 것을 확인하였다. 이 연구에서 임계온도는 상온에서의 계면전단강도의 50%의 손실을 발생시키는 온도로 정의하였다. 계면전단강도에 대한 임계온도는 섬유의 종류가 아닌 레진이 성능에 지배된다는 것이다. 2차 실험에서는 임계온도하에서 0.25시간의 간격으로 노출시간에 대한 영향을 고찰하였다. 모든 실험 결과로부터, 노출시간의 영향은 노출온도에 비하여 그 영향이 크진 않지만 무시할 정도는 아닌 것으로 나타났다. 더욱이, 그 영향은 임계온도하에서 매우 중대함을 확인하였다.

Fracture toughness of high performance concrete subjected to elevated temperatures Part 2 The effects of heating rate, exposure time and cooling rate

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.513-537
    • /
    • 2017
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was investigated by conducting three-point bending tests on a total of 240 notched beams of $500mm{\times}100mm{\times}100mm$ subjected to heating temperatures up to $450^{\circ}C$ with exposure times up to 16 hours and various heating and cooling rates. For a heating rate of $3^{\circ}C/min$, $K_{IC}$ for the hot concrete sustained a monotonic decrease trend with the increasing heating temperature and exposure time, from $1.389MN/m^{1.5}$ at room temperature to $0.942MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.906MN/m^{1.5}$ for 8-hour exposure time and $0.866MN/m^{1.5}$ for 16-hour exposure time. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and then rapidly down to $0.869MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.812MN/m^{1.5}$ for 8-hour exposure time and $0.771MN/m^{1.5}$ for 16-hour exposure time. In general, the $K_{IC}$ values for the hot concrete up to $200^{\circ}C$ were larger than those for the cold concrete, and an inverse trend was observed thereafter. The increase in heating rate slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.893MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.839MN/m^{1.5}$ for $10^{\circ}C/min$ for the hot concrete and from $0.792MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.743MN/m^{1.5}$ for $10^{\circ}C/min$ for the cold concrete after an exposure time of 16 hours. The increase in cooling rate also slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.771MN/m^{1.5}$ for slow cooling to $0.739MN/m^{1.5}$ for fast cooling after an exposure time of 16 hours. The fracture energy-based fracture toughness $K_{IC}$' was also assessed, and similar decrease trends with the heating temperature and exposure time existed for both hot and cold concretes. The relationships of two fracture toughness parameters with the weight loss and the modulus of rapture were also evaluated.

Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성 (Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature)

  • 채병찬
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

The Effect of Exposure in Elevated Temperatures on Bending Properties of Wood

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.20-29
    • /
    • 1999
  • Temperature has important effect on mechanical properties of wood. These effect needs to be understood and taken into account in the structural use of wood. Furthermore, the effect of cooling after exposing to high temperature must be explained. In this study, the effect of temperature, exposure time, specific gravity, and cooling on bending properties were investigated. The boundary temperatures at which bending MOE and MOR reduced rapidly were approximately $200^{\circ}C$ and $150^{\circ}C$, respectively. This boundary temperature was nearly constant with independence of species(specific gravity), exposure time, and cooling. Above the boundary temperature, the effect of exposure time was increased with temperature and the reduction of bending MOE and MOR for Japanese Larch with relatively higher specific gravity was smaller than that of Hem-fir. The recovery of bending MOE and MOR after cooling was also more significant above the boundary temperature than below. The degree of cooling effect was larger for MOR than MOE. Consequently, bending properties of wood in elevated temperatures should be considered in terms of the boundary temperature, $200^{\circ}C$ for bending MOE, $150^{\circ}C$ for MOR, and these boundary temperatures must be considered an important factor. Furthermore, to evaluate the safety of structure, the recovery after cooling should be considered.

  • PDF

홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정 (Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1624-1631
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at Ra = 6.35 $\times$ 10$^{6}$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful fur analyzing the temperature field variations of unsteady thermal fluid flows.

홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정 (Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.530-535
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at $Ra = 6.35{\times}10^6$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful for analyzing the temperature field variations of unsteady thermal fluid flows.

  • PDF

외기온 -15℃에 노출시간 변화가 콘크리트의 초기동해 피해에 미치는 영향 (Outside -15℃ Exposure Time Impact on Early Frost Damage)

  • 최윤호;이영준;이동주;경영혁;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.85-86
    • /
    • 2019
  • In this study, when the normal concrete became a $20^{\circ}C$ image after the exposure time at an external temperature of $-15^{\circ}C$, the limit point of the early frost damage was analyzed. As a result, it was confirmed that the degree of concretion was higher than the external level after carrying in and after exposure, and that the initial Tokai damage was observed after 12 hours of exposure.

  • PDF

Lead Exposure Indices, Workloads, and Environmental Factors in Battery Manufacturing Workplace

  • Cho, Kwang Sung;Jeong, Byung Yong
    • 대한인간공학회지
    • /
    • 제32권3호
    • /
    • pp.259-266
    • /
    • 2013
  • Objective: This study aims to evaluate the workloads of industrial and automobile storage battery industries and their association to biological exposure indices. Background: Occupational lead exposure at battery manufacturing workplace is the most serious problem in safety and health management. Method: We surveyed 145 workers in 3 storage battery industries. Environmental factors(lead in air, temperature, humidity and vibration)), biological exposure indices(lead in blood and zinc protoporphyrin in blood) and individual workload factors(process type, work time, task type, weight handling and restrictive clothing) were measured in each unit workplace. Results/Conclusion: Air lead concentration is statistically significant in associations with workload factors(process type, work time, task type, and restrictive clothing) and environmental factors (humidity and vibration), whereas zinc protoporphyrin in blood are significantly associated with work time and weight handling. And lead in blood is significantly associated with work time, weight handling and temperature. Application: The results of this study are expected to be a fundamental data to job design.

다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성 (Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites)

  • 윤성호;박지혜
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.422-428
    • /
    • 2017
  • 본 연구에서는 온도와 수분에 노출된 다중벽 탄소나노튜브가 함유된 나노복합재의 수분흡수거동, 인장특성, 열분석특성을 평가하였다. 이때 탄소나노튜브 함유량은 0 wt%, 1 wt%, 2 wt%를 고려하였으며 시편은 각각 $25^{\circ}C$$75^{\circ}C$의 침수조건에 600시간까지 노출시켰다. 연구결과에 따르면 수분흡수량은 노출시간이 길어지면 증가하지만 최대 수분흡수량과 600시간에서의 수분흡수량 차이는 일정하게 나타났다. 인장탄성계수는 노출시간이 길어지면 낮아지고 탄소나노튜브 함유량이 많고 노출온도가 높아지면 감소 정도는 크게 나타났다. 인장강도는 탄소나노튜브가 함유되지 않은 경우 노출시간이 길어지면 감소하지만 MWCNT 함유되면 MWCNT의 보강 효과로 인해 증가하는 양상이 나타났다. 저장탄성계수, 유리전이온도, $tan{\delta}$ 피크 크기는 노출시간이 길어지면 낮게 나타나며 높은 노출온도에 300시간 이상 노출되면 두 개의 피크를 갖는 $tan{\delta}$ 선도가 나타났다.

Surface morphology modification of vertically-aligned carbon nanotubes by water vapor exposure

  • Adil, Hawsawi;Jeong, Goo-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.238.2-238.2
    • /
    • 2015
  • Surface modification of vertically-aligned carbon nanotube (VACNT) is essential in order to meet specific demands for particular applications such as field emission displays, heat dissipation device and potential sun energy conversion due to their superior electrical and thermal conductivity and strong light absorption. In this study, we observe the effect of exposure to water vapor on a different lengths of the surfaces of VACNT. The study was conducted on three different lengths of the VACNT: short length around $200{\mu}m$, medium-length around $500{\mu}m$, and high length around 1 mm. Water exposure time ranges between 2-10 min and temperature of the water ranges from 60 to 120 oC. The result of water vapor exposure mainly show that increasing the exposure time and water temperature give rise to increase of the speed of change on the surface of the VACNT. Especially, the shorter VACNT change their surface morphology most rapidly.

  • PDF