• Title/Summary/Keyword: exponentially fitted

Search Result 19, Processing Time 0.027 seconds

Fabrication of a Novel High Temperature Platinum Resistance Thermometer (새로운 고온백금저항온도계의 설계 및 제작)

  • Gam, K.S.;Park, J.C.;Chang, C.G.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2001
  • High temperature platinum resistance thermometers(HTPRTs) were designed and fabricated using a synthetic sapphire single crystal as sensor former, insulation and protection tube, and its characteristics was investigated. Several fixed points measurement showed that the sapphire HTPRTs were satisfied with the ITS-90 criteria as the interpolating thermometer. The temperature-resistance characteristics of HTPRT was fitted to the quadratic relationship in the temperature range from $500^{\circ}C$ to $1500^{\circ}C$. The reproducibility of Cu freezing point realized using the sapphire HTPRT was ${\pm}19.2\;mK$. The insulation resistance of the HTPRT exponentially decreased as temperature increased, and showed to $63\;k{\Omega}({\sim}31.5\;mK)$ at $1500^{\circ}C$.

  • PDF

A Study on the Inverse kinematic Analysis of a Binary Robot Manipulator using Backbone Curve (등뼈 곡선을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Lee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.174-179
    • /
    • 1999
  • A binary parallel robot manipulator uses actuators which have only two stable states and is structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has the following advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators, it is very difficult to solve an inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem when the number of actuators are too much or the target position is located outside of workspace. The backbone curve is generated optimally by considering the curvature of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criteria.

  • PDF

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

Two Stage Process Mechanism of Silica Adsorption by Soil in Adsoption Kinetics (토양의 규산 흡착 카이네틱에서 2단계 흡착 기작)

  • Lee, Sang-Eun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • To clarify the mechanism of silica adsorption to soil, kinetic study using continuous stirred-flow method was conducted with the Luisiana soil at three pH levels (pH 5.0, 6.5, and 8.0). Silica adsorption increased continuously without showing the maximum adsorption for long enough experimental time. Kinetic curve of silica adsorption could be divided into two stage processes. The first stage process was fitted well to the following equation with highly significant correlation coefficient : $$R_{ad}=K_a*(Q_{OH}^S)^n$$ where, $R_{ad}$ is silica adsorption rate($Si\;{\mu}mal/min$). $Q_{OH}^S$ is the negative charge sites on the soil surface created by alkali titration, and $K_a$ and n are constants. The "n" value of the first stage process was 1.1. This value indicates that the silica adsorption is accomplished by the monodendate ligand bonding. The second stage process was fitted well to the following equation : $$R_{ad}=K_b*(pH)$$ where, $K_b$ is a constant. The equation indicates that the silica adsorption is not proportional to the $OH^-$ ion concentration. Rather, the increasing pattern of silica adsorption rate with the increase of $OH^-$ ion concentration would decrease exponentially.

  • PDF

The Selection of Yield Response Model of Sugar beet (Beta vulgaris var. Aaron) to Nitrogen Fertilizer and Pig Manure Compost in Reclaimed Tidal Land Soil (간척지에서 질소비료 및 돈분 퇴비 시용에 따른 사탕무 (Beta vulgaris var. Aaron)의 수량 반응 해석을 위한 시비반응 모델 탐색)

  • Lim, Woo-Jin;Sonn, Yeon-Kyu;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.174-179
    • /
    • 2010
  • In order to interpret yield response of sugar beet to nitrogen fertilizer, and pig manure compost in saline-sodic soil of reclaimed tidal land, 4 kinds of response model, i.e., quadratic, exponential, square root, and linear response, and plateau model, are applied. The root fresh yield of sugar beet decreased exponentially with the increase of soil EC. The root fresh yield of sugar beet to nitrogen fertilizer was fitted best to the linear response, and plateau model among 4 yield response models with highly significant determination coefficient ($R^2=0.92^{**}$). The optimum N rate determined on the model was 138 kg N $ha^{-1}$. The root fresh yield of sugar beet to pig manure compost was fitted best to the quadratic model among 4 yield response models with highly significant determination coefficient ($R^2=0.99^{**}$). The maximum N rate determined on the model was 9.17 ton $ha^{-1}$. In conclusion, the proper model to interpret the yield of sugar beet in saline-sodic soil differs with the kinds of nutrient, linear response, and plateau model for fertilizer nitrogen, and quadratic model to pig manure compost.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Adsorption Coefficients of Eight Pesticides for Citrus Orchard Soils with Different Soil Organic Matter (유기물함량이 다른 감귤원 토양에서 8 개 농약의 흡착상수)

  • Oh, Sang-Sil;Hyun, Hae-Nam;Moon, Doo-Khil
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • This study was carried out to determine the adsorption characteristics of eight pesticides on thirty citrus orchard soil so soil samples were taken from nineteen soil series containing different fractions of organic carbon(Foc). The adsorption characteristics for eight pesticides fitted to Freundlich isotherms. The adsorption isotherms showed C-type for alachlor and chlorpyrifos, L-type for linuron and diniconazole. and S, C, and L-types for metribuzin, metolachlor, and alachlor with increasing Foc, respectively. In particular, the adsorption of chlorothalonil showed S, C, L, and H-types with increasing Foc. Distribution coefficient(Kd) values of metribuzin, metolachlor, and alachlor were below $10\;Lkg^{-1}$ and increased linearly with Foc. Kd values of linuron, diuron and chlorothalonil increased exponentially to 60, 200, and $400\;Lkg^{-1}$, respectively and those of diniconazole and chlorpyrifos increased logarithmically. Kf value. Freundlich adsorption coefficiient, increased with Kd in the same manner with Kd. Furthermore, the linearity of Kf value was larger than that of Kd value.

  • PDF

A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance (Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구)

  • Shin, Hyunseong;Yang, Seunghwa;Yu, Suyoung;Chang, Seongmin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • In this study, a sequential multiscale homogenization method to characterize the effective thermal conductivity of nano particulate polymer nanocomposites is proposed through a molecular dynamics(MD) simulations and a finite element-based homogenization method. The thermal conductivity of the nanocomposites embedding different-sized nanoparticles at a fixed volume fraction of 5.8% are obtained from MD simulations. Due to the Kapitza thermal resistance, the thermal conductivity of the nanocomposites decreases as the size of the embedded nanoparticle decreases. In order to describe the nanoparticle size effect using the homogenization method with accuracy, the Kapitza interface in which the temperature discontinuity condition appears and the effective interphase zone formed by highly densified matrix polymer are modeled as independent phases that constitutes the nanocomposites microstructure, thus, the overall nanocomposites domain is modeled as a four-phase structure consists of the nanoparticle, Kapitza interface, effective interphase, and polymer matrix. The thermal conductivity of the effective interphase is inversely predicted from the thermal conductivity of the nanocomposites through the multiscale homogenization method, then, exponentially fitted to a function of the particle radius. Using the multiscale homogenization method, the thermal conductivities of the nanocomposites at various particle radii and volume fractions are obtained, and parametric studies are conducted to examine the effect of the effective interphase on the overall thermal conductivity of the nanocomposites.

Growth and Production of Mactra veneriformis (Bivalvia) on the Songdo Tidal Flat, West Coast of Korea (서해 송도 갯벌에서의 동죽(Mactra veneriformis: Bivalvia)의 성장과 생산)

  • 신현출;고철환
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.403-412
    • /
    • 1995
  • The present study was performed to determine th growth and production of Mactra veneriformis on the Songdo tidal flat off Inchon. west coast of Korea. Monthly samples were collected from Marc 1989 to September 1990. The size distributions of shell length showed unimodal patterns from March to August 1989. The binodal pattern after September 1989 indicated a recruitment of young clams during this period. The density fluctuated irregularly, but showed a decreasing pattern over time on the whole. The density of the year class 1989 increased markedly after February 1990. The growth in shell length showed three phases during a year, a fast growth phase in spring, a slow growth phase in summer and autumn, and a lag phase in winter. The annual increment in shell length reduced with age. The flesh dry weight showed a peak in late spring just before the spawning period, and another peak in autumn. The length of annuli and the back-calculated flesh dry weight were used to describe the annual growth. The growth in shell length fitted to the von Bertalanffy model and the flesh dry weight to the Gompertz model. The absolute growth rate of the shell length reduced gradually with age. The year class 1985 had the highest L, and the yeat class 1986 the lowest L. The annual growth in weight showed a typical sigmoid curve. The growth rate was maximum at the age of 2 to 3. Year classes of 1984 and 1985 had higher values of W and higher absolute growth rates than those of 1986 and 1987. Maximum absolute growth rates of 1986 and 1987 year classes were recorded at younger ages than 1984 and 1985 year classes. The annual relative growth rates of length and weight decreased exponentially with age. Biomass in flesh dry weight increased till spring and thereafter decreased progressively. Maximum biomass was 134.6g m/SUP -2/ in August 1990. The biomass of 1989 yeat class occupied highest proportion in total biomass. Annual production in flesh dry weight from March 1989 to March 1990 was 67.9 g m/SUP -2/ year/SUP -1/. Cumulative production of 1989 year class was highest among all year classes, and that of year class 1984 was lowest. The production is high in spring and autumn, and very low in summer and winter.

  • PDF