• Title/Summary/Keyword: exponential power-law

Search Result 78, Processing Time 0.027 seconds

First-Order Mass Transfer in a Diffusion-Dominated (Immobile) Zone of an Axisymmetric Pore: Semi-Analytic Solution and Its Limitations (대칭형 다공성 매질의 확산주도 영역에 관한 1차 물질이동 방정식)

  • Kim, Young-Woo;Kang, Ki-jun;Cho, Jung-ho;Kabala, Zbigniew
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4664-4670
    • /
    • 2010
  • Comparison of the classical mobile-immobile zone (MIM) model to the derived model led to several conclusions. If the MIM model is to be applied, the initial concentration in the immobile zone has to be down-scaled by a correction factor that is a function of pore geometry. The MIM model was valid only after sufficiently long time has passed, i.e., only after the diffusion front reaches the deepest pore wall in the immobile zone. The MIM mass-transfer coefficient $\alpha$, was inversely proportional to the square of the pore depth. Also it did not depend on the mobile-zone flow velocity, contrary to the number of laboratory and field observations. The classical MIM model displayed a rapid exponential decay of immobile-zone concentration. Meanwhile at large times, the newly derived model displayed similar exponential decay. This was contrary to the mounting evidence of power-law BTC tails observed in laboratory and field settings.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory

  • Gupta, Simmi;Chalak, H.D.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.483-499
    • /
    • 2022
  • In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.

The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and black hole mass

  • Park, Jongho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.36.2-37
    • /
    • 2016
  • We study the long-term radio variability of 43 radio bright AGNs by exploiting the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program. The UMRAO database provides high quality lightcurves spanning 25 - 32 years in time at three observing frequencies, 4.8, 8, and 14.5 GHz. We model the periodograms (temporal power spectra) of the observed lightcurves as simple power-law noise (red noise, spectral power $P(f){\propto}f^{-{\beta}}$ using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (${\beta}$) from ${\approx}1$ to ${\approx}3$. We find a strong anti-correlation between ${\beta}$ and the fractal dimension of the lightcurves, which provides an independent check of the quality of our modelling of power spectra. We fit a Gaussian function to each flare in a given lightcurve to obtain the flare duration. We discover a correlation between ${\beta}$ and the median duration of the flares. We use the derivative of a lightcurve to obtain a characteristic variability timescale which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting on the observed timescales are corrected, the variability timescales of our sources are proportional to the black hole mass to the power of ${\alpha}=1.70{\pm}0.49$. We see an indication for AGNs in different regimes of accretion rate, flat spectrum radio quasars and BL Lac objects, having different scaling relations with ${\alpha}{\approx}1$ and ${\approx}2$, respectively. We find that modelling the periodograms of four of our sources requires the assumption of broken powerlaw spectra. From simulating lightcurves as superpositions of exponential flares we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases (The paper is about to be submitted to ApJ).

  • PDF

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.367-376
    • /
    • 2022
  • Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Application of Generalized Transmissivity Decreasing Function in TOPMODEL Operation (TOPMODEL 투수량계수 감소함수 일반화과정의 적용에 관한 연구)

  • Jeong, Seon-Hui;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 1999
  • This study investigated the applicability of generalized TOPMODEL approach which introduces the power law of decreasing transimissivity with depth instead of the traditional exponential decreasing function. The 50m digital elevation model(DEM) of Dongkog subwatershed at Wichon Test Watershed was used to perform runoff simulation. Random number generation algorithm was integrated into the calibration process for the reliable of model performance. General power law version of TOPMODEL with exponent 2 and 3 showed higher simulation efficiency than other the approaches. This results from the fact that the power law models with exponent 2 and 3 can represent the soil characteristics of study area better than other models.

  • PDF

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.