• Title/Summary/Keyword: exponential graded material

Search Result 82, Processing Time 0.025 seconds

Finite element based free vibration analysis of sandwich FGM plates under hygro-thermal conditions using zigzag theory

  • Aman Garg;Neeraj Kumar Shukla;M.Ramkumar Raja;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.547-570
    • /
    • 2023
  • In the present work, a comparative study has been carried out between power, exponential, and sigmoidal sandwich FGM plates for free vibration conditions under hygro-thermal conditions. Rules of mixture is used to determine effective material properties across the thickness for power-law and sigmoid sandwich FGM plates. Exponential law is used to plot effective material properties for exponentially graded sandwich FGM plates. Temperature and moisture dependent material properties were used during the analysis. Free vibration analysis is carried out using recently proposed finite element based HOZT. Present formulation satisfies interlayer transverse stress continuity conditions at interfaces and transverse shear stress-free conditions at the plate's top and bottom surfaces. The present model is free from any penalty or post-processing requirements. Several new results are reported in the present work, especially for unsymmetric sandwich FGM plates and exponential and sigmoidal sandwich FGM plates.

Pull-in instability of electrically actuated poly-SiGe graded micro-beams

  • Jia, Xiao L.;Zhang, Shi M.;Yang, Jie;Kitipornchai, Sritawat
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.215-230
    • /
    • 2013
  • This paper investigates the pull-in instability of functionally graded poly-SiGe micro-beams under the combined electrostatic and intermolecular forces and temperature change. The exponential distribution model and Voigt model are used to analyze the functionally graded materials (FGMs). Principle of virtual work is used to derive the nonlinear governing differential equation which is then solved using differential quadrature method (DQM). A parametric study is conducted to show the significant effects of material composition, geometric nonlinearity, temperature change and intermolecular Casimir force.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading

  • Meksi, Abdeljalil;Benyoucef, Samir;Sekkal, Mohamed;Bouiadjra, Rabbab Bachir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.215-228
    • /
    • 2021
  • This paper investigates the effect of micromechanical models on the bending behavior of bidirectional functionally graded (BDFG) beams subjected to different mechanical loading. The material properties of the beam are considered to be graded in both axial and thickness directions according to a power law. The beam's behavior is modeled by the mean of quasi 3D displacement field that contain undetermined integral terms and involves a reduced unknown functions. Navier's method is employed to determine and compute the displacements and stress for a simply supported beam. Different homogenization schemes such as Voigt, Reus, and Mori-Tanaka are employed to analyze the response of the BDFG beam subjected to linear, uniform, exponential and sinusoidal distributed loading. The results obtained by the present method are compared with available results in the literature and a good agreement was found. Several numerical results are presented in tabular form and in figures to examine the effects of the material gradation, micromechanical models and types of loading on the bending response of BDFG beams. It can be concluded that the present theory is not only accurate but also simple in predicting the bending response of BDFG beam subjected to different static loads.

Axisymmetric analysis of a functionally graded layer resting on elastic substrate

  • Turan, Muhittin;Adiyaman, Gokhan;Kahya, Volkan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.423-442
    • /
    • 2016
  • This study considers a functionally graded (FG) elastic layer resting on homogeneous elastic substrate under axisymmetric static loading. The shear modulus of the FG layer is assumed to vary in an exponential form through the thickness. In solution, the FG layer is approximated into a multilayered medium consisting of thin homogeneous sublayers. Stiffness matrices for a typical homogeneous isotropic elastic layer and a half-space are first obtained by solving the axisymmetric elasticity equations with the aid of Hankel's transform. Global stiffness matrix is, then, assembled by considering the continuity conditions at the interfaces. Numerical results for the displacements and the stresses are obtained and compared with those of the classical elasticity and the finite element solutions. According to the results of the study, the approach employed here is accurate and efficient for elasto-static problems of FGMs.

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.