• Title/Summary/Keyword: explosives

Search Result 1,142, Processing Time 0.029 seconds

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.

Treatment of Combat-related Gunshot and Explosive Injuries to the Extremities (전투 상황에서 발생한 사지 총상 및 폭발창의 치료)

  • Lee, Jung Eun;Lee, Young Ho;Baek, Goo Hyun;Lee, Kyung-Hag;Cho, Young Jae;Kim, Yeong Cheol;Suh, Gil Joon
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.111-124
    • /
    • 2013
  • Purpose: We should prepare proper medical service for disaster control as South Korea is not free from terrorism and war, as we experienced through the two naval battles of the Yeonpyeong, one in 1999 and the other in 2002, the sinking of Cheonan in 2010, and the attack against the border island of Yeonpyeong in 2010. Moreover, North Korea's increasingly bellicose rhetoric and mounting military threats against the world demand instant action to address the issue. The aim of this article is to describe our experience with three patients with combat-related gunshot and explosive injuries to their extremities and to establish useful methods for the management of patients with combat-related injuries. Methods: Three personnel who had been injured by gunshot or explosion during either the second naval battle of the Yeonpyeong in 2002 or the attack against the border island of Yeonpyeong in 2010 were included in our retrospective analysis. There were one case of gunshot injury and two cases of explosive injuries to the extremities, and the injured regions were the left hand, the right foot, and the right humerus. In one case, the patient had accompanying abdominal injuries, and his vital signs were unstable. He recovered after early initial management and appropriate emergency surgery. Results: All patients underwent emergent surgical debridement and temporary fixation surgery in the same military hospital immediately after their evacuations from the combat area. After that, continuous administration of antibiotics and wound care were performed, and definite reconstructions were carried out in a delayed manner. In the two cases in which flap operations for soft tissue coverage were required, one operation was performed 5 weeks after the injury, and the other operation was performed 7 weeks after the injury. Definite procedures for osteosynthesis were performed at 3 months in all cases. Complete union and adequate functional recovery were achieved in all cases. Conclusion: The patient should be stabilized and any life-threatening injuries must first be evaluated and treated with damage control surgery. Staged treatment and strict adherence to traditional principles for open fractures are recommended for combat-related gunshot and explosive injuries to the extremities.

Elemental Analysis by Neutron Induced Nuclear Reaction - Prompt Gamma Neutron Activation Analysis for Chemical Measurement - (중성자 핵반응을 이용한 원소 검출기술 - 즉발감마선 중성자 방사화분석법을 이용한 검출기술 -)

  • Song, Byung Chul;Park, Yong Joon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.1041-1051
    • /
    • 2003
  • Neutron induced prompt gamma activation analysis (PGAA) offers a nondestructive, sensitive and relatively rapid method for the determination of trace and major elements and is proven to be convenient for online analysis of minerals, metals, coal, cement, petrochemical, coating, paper as well as many other materials and products. The technique has found many uses in medicine, industry, research, security and the detection of contraband items. This report reviews the present status and future trends of the PGAA techniques. Requirements for the system are neutron source, high resolution HPGe detectors with a high-voltage power supply, an amplifier, analog-to-digital converter, and a multichannel analyzer for the detection and measurement of prompt ${\gamma}$-ray emit form the neutron capture elements. Introducing a ${\gamma}$-${\gamma}$ coincidence system also improves the quality of the ${\gamma}$-ray spectrum by suppressing the background created from the Compton scattering of high energy prompt ${\gamma}$-rays. A PGAA system using a $^{252}Cf$ neutron source is currently under construction for the on-line measurement of several elements in aqueous samples at KAERI. The system can be applied for the detection of chemical weapons and explosives as well as various narcotics.

The Study of noise and vibration on application of the method breaking & excavating rock(Super wedge) (암파쇄굴착공법(Super wedge) 적용에 따른 소음.진동에 대한 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won;Ryu, Chang-Ha
    • Proceedings of the KSEE Conference
    • /
    • 2006.10a
    • /
    • pp.167-184
    • /
    • 2006
  • There is cattle shed and house structure of a country village in the vicinity of the construction site. that is why the environmental effect evaluation on blasting had been done in advance to prevent any harm to those from the work. As the result, it is impossible to apply to the blasting method, and the Super wedge method, a kind of a rock-splitting method which there is no secondary breaking by a breaker of the methods breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation, applied to decrease noise and vibration, and to the work classification, the extent of noise and vibration measured with the instrument only for noise(SC-310c) and with the instrument only for vibration(BLASTMATE) respectively. A drilling, splitting, collecting, loading works at the closest point(about 10m) is barely possible on the consideration of vibration to the result of measurement, but carefulness needs on moving of equipment. On the case of noise, even drilling, collecting, loading work except splitting at the comparatively close point(about 20m) is difficult. So, the method breaking &excavating rock according to the classification of the blasting method by the ministry of construction & transpotation has to apply in consideration of noise level in accordance with the work processing.

  • PDF

The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead (실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구)

  • Hwang, Changsu;Park, Younghyun;Park, Seikwon;Jung, Daehan;Lee, Moonsik;Kang, Sunbu;Kim, Deuksu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.904-912
    • /
    • 2019
  • We have studied the numerical analysis about the fragment ejection velocity and spray angle when the High Explosive warhead detonated at proximity distance at an aircraft. To study the physical quantities about the warhead components is very important to assessment the vulnerability of aircraft. Generally, the physical quantities about the components of a warhead such as the mass, length, diameter and charge to mass ratio are unknown. Therefore, it is required to estimate the physical quantities by using physical continuities of similar threats. The empirical formulas to understand the dependence among charge to mass ratio, length and diameter ratio were driven by using the physical parameters of similar threatening such as terrier, sparrow. As a result, we confirmed that the dead mass ratio was closed to 20% of warhead mass since the metal case of the proximity threat acts as a simple carrier. This implies that the effective length and diameter of High Explosive Compound is smaller than the length and diameter of warhead, and become a key to understand the large ejection gradient velocity and small spray angle of fragments within 6 degree.

The Comparison and Analysis of Dust, Soil and Water Pollution Through the Case Study of Demolition Sites (해체공사의 분진발생과 토양, 수질 오염의 특성)

  • Lee, Kyoung-Hee;Kim, Hyo-Jin;Park, Jae-Han;Chu, Kyoung-Hoon;Ko, Kwang-Baik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.100-108
    • /
    • 2010
  • With the rapid economic growth and improvement of living conditions in Korea, rebuilding and redevelopment of existing houses has also been rapidly increasing. As a result, considerable construction and demolition wastes have been produced. Demolition wastes, however, must be given special attention because of the various harmful substances in them. The construction waste has been produced most at demolition phase, but the research into that area has not being to make nearly within the country. The aim of this study was to evaluate and compare the contamination figures of the heavy metals and toxin organic substances in the soil and water caused by flying ashes generated and eventually accumulated in building demolition works. AB a result. most of the pollution levels were not worrisome, but some were increased after the demolition with the water used to prevent the dusty air and in the target buildings. However in the vicinity of the demolition sites with explosives there was no report of study in water and soil pollutions, so to minimize pollutions we need to make plans to select the harmful substance in the first place. Thus, this research is expected to be the important materials for future research into the construction waste area.

Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals (초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조)

  • Kim, Ki-Young;Lee, Jung-Mo;Baag, Chang-Eob;Jung, Hee-Ok;Hong, Myung-Ho;Kim, Jun-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2010
  • To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km

The Air Space System and UVA's Regulation in Japanese Civil Aeronautics Act (일본 항공법상의 공역체계와 무인항공기 규제)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.115-168
    • /
    • 2018
  • An amendment to Japanese Civil Aeronautics Act came into effect December 10, 2015. The Act prohibits flying drones over residential areas or areas surrounding an airport without permission from the Minister of Land, Infrastructure and Transportation. Flying drones during night time and during an event is also prohibited. The term "UAV" or "UA" means any aeroplane, rotorcraft, glider or airship which cannot accommodate any person on board and can be remotely or automatically piloted (Excluding those lighter than a certain weight (200 grams). Any person who intends to operate a UAV is required to follow the operational conditions listed below, unless approved by the Minister of Land, Infrastructure, Transport and Tourism; (i) Operation of UAVs in the daytime, (ii) Operation of UAVs within Visual Line of Sight (VLOS), (iii) Maintenance of a certain operating distance between UAVs and persons or properties on the ground/water surface, (iv) Do not operate UAVs over event sites where many people gather, (v) Do not transport hazardous materials such as explosives by UAV, (vi) Do not drop any objects from UAVs. Requirements stated in "Airspace in which Flights are Prohibited" and "Operational Limitations" are not applied to flights for search and rescue operations by public organizations in case of accidents and disasters. This paper analyzes some issues as to regulations of UAVs in Korean Aviation Safety Act by comparing the regulations of UAVs in Japanese Civil Aeronautics Act. This paper, also, offers some implications and suggestions for regulations of UAVs under Korean Aviation Safety Act.

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.

The need for mechanization in todays canal building program in korea and overseas (수로의 기계화 시공의 필요성)

  • Ha, Gordon P.wkins
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 1979
  • Canal construction is not the only area in which mechanization has advanced with great strides. All phases of the construction industry, including earthmoving, land clearing and levelling, road construction, and drainage and water control projects, have benefited from today's technological advancements. Lasers, an excellant example of advanced technology, have been refined for use as guidance systems for construction machinery, increasing accuracy and the speed of operation. The use of explosives by contractors is becoming more commonplace. One of the most valuable modern tools available today is the two-way radio. On today's sophisticated projects a single machine being down can frequently stop the progress of the entire project, delaying hundreds of men and machines from completing their assigned work for the day. The use of two-way radios in all the pickups and cars being used on a project facilitates communication so that emergency repairs can be effected immediately, and costly down time on any project can be reduced to a minimum. Not every construction project is suitable to mechanization. However, on the majority of projects mechanization has a great deal to offer the Korean contractor, and all contractors, in savings of time and money. Each and every project being considered by a contractor, should be closely examined for the most effective and efficient machinery application available. The International Commission on Irrigation and Drainage (ICID) has formed a committee on construction techniques being used in canal construction today. Two publications are now available describing the advances made in recent years. Standards for construction have been established for mechanized systems and this information is being distributed worldwide.

  • PDF