• Title/Summary/Keyword: explosion over-pressure

Search Result 33, Processing Time 0.026 seconds

A Study on the Quantitative Analysis for Explosion of LPG Storage Tank (LPG 저장탱크의 폭발에 대한 정량적 영향평가에 관한 연구)

  • Leem, Sa Hwan;Huh, Yong Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The influence of the over-pressure caused by Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by accident to buildings and human bodies was estimated by applying the probit model. As a result, the injury estimation was conducted by using the probit model for leakage 10% of 20ton storage tank. The separate distances from LPG station for building(damage) and human(lung hemorrhage to death) are 260 and 30 meters, respectively.

Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation (폭굉을 고려한 압력용기 최대허용압력 결정방법의 제안)

  • Choi, Jinbok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.235-241
    • /
    • 2018
  • The internal pressure is a critical parameter for designing a pressure vessel. The static pressure that a pressure vessel must withstand is usually determined according to the various codes and standards with simple formula or numerical simulations considering the geometric parameters such as diameter and thickness of a vessel. However, there is no specific codes or technical standards we can use practically for designing of pressure vessels which have to endure the detonation pressure. Detonation pressure is a kind of dynamic pressure which causes an impulsive pressure on the vessel wall in a extremely short time duration. In addition, it is known that the magnitude of reflected pressure at the vessel wall due to the explosion can be over twice the incident pressure. Therefore, if we only consider the reflected pressure, the design of the pressure vessel can be too conservative from the economical point of view. In this study, we suggest a practical method to evaluate the magnitude of maximum allowable pressure that the pressure vessel can withstand against the detonation inside a vessel. As an example to validate the proposed method, we consider the pressure vessel containing hydrogen gas.

A Study on Estimation of Human Damage Caused by Rupture of Butane Can (부탄 캔 파열로 인한 인체피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Choi, Seong-Joo;Lee, Jong-Rark;Lim, Dong-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.98-104
    • /
    • 2007
  • As the industrial society is highly developing, human need in daily life has also changed drastically. With the introduction of 40 hour working week system, more households enjoy picnics on weekends. More gas accidents take place on Saturdays and on Sundays than any other days of week. In this context, the Institute of Gas Technology Training in Korea Gas Safety Corporation carries out explosion experiment to make trainees to take all possible measure to ensure safe management of gas in the field by fully recognizing the hazards of gas explosion accidents. In this study, the influence of explosion over-pressure caused by the rupture of butane can thrown away after use was calculated by using the Hopkinson's Scaling Law and the accident damage was estimated by applying the influence on the adjacent people into the Probit model. The value of those away from 50 meters from the explosion site was 1.35kPa and the peak overpressure to thoes away from 25 meters directly was 3.2kPa. Those value was input to the PROBIT model, the estimation showed the sante result 0 percent of damage possibility.

A Study on the Estimation of Human Damage Caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG자동차충전소에서 증기운폭발로 인한 인명피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The demand of gas as an eco-friendly energy source has being increased. With increasing the LPG demand, the number of LPG filling station. In this work, the influence on over-pressure caused by Vapor Cloud Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by the accident to a human body was estimated by applying the probit model. As a result of the injury estimation conducted by using the probit model for leakage 10% of 20ton storage tank. The distances from LPG station for death and tympanum rupture are 36.5 and 290 meters, respectively.

Effects of Explosion on Structures (폭발이 구조물에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Information on overpressure, positive phase duration, and impulse are required to assess the effects of shock waves or pressure waves on the structure. In this study, the overpressure and positive phase duration were determined by applying the Multi-Energy Method, which is found to be effective in analyzing the explosion of vapor clouds. Based on the total heat of combustion estimated in the cyclohexane vapor cloud explosion in the Nypro Ltd(UK), overpressure and positive phase duration at the distance of 40, 80, 120, 160, 200, 240, 280, 320, 360(m) from the source of explosion were evaluated. Overpressure was shown to decrease exponentially and positive phase duration increased almost linearly with distance. A probit function was used to assess the probability of damages for the structures at each distance using the overpressure and impact obtained at the above mentioned distances. The Analyses of probability of damages have shown that there is a high probability of collapse at distances within 120m, major damage to structures within 240m, and minor damage and breakage of window panes of structures occur over the entire distances.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Reinforced concrete wall as protection against accidental explosions in the petrochemical industry

  • Ambrosini, Daniel;Luccioni, Bibiana Maria
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.213-233
    • /
    • 2009
  • In this paper the study of a reinforced concrete wall used as protection against accidental explosions in the petrochemical industry is presented. Many alternatives of accidental scenarios and sizes of the wall are analyzed and discussed. Two main types of events are considered, both related to vessel bursts: Pressure vessel bursts and BLEVE. The liberated energy from the explosion was calculated following procedures firmly established in the practice and the effects over the structures and the reinforced concrete wall were calculated by using a CFD tool. The results obtained show that the designed wall reduces the values of the peak overpressure and impulse and, as a result, the damage levels to be expected. It was also proved that a reinforced concrete wall can withstand the blast load for the considered events and levels of pressure and impulse, with minor damage and protect the buildings.

Risk Analysis for Installation Types of Pressure Safety Valve used in the High-pressure Gas Facility (고압가스 사용시설 내 안전밸브 설치유형별 리스크 분석)

  • Kim, Myung-Chul;Woo, Jeong-Jae;Lee, Hyung-Sub;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • This study investigated the probability of possible accident through qualitative and quantitative analysis of the pressure safety valve types installed in facilities using high pressure gas to compare the installation domestic and foreign pressure safety valve standards sought the safety characteristics and safety improvement direction accordingly. The three types are the case where the shut-off valve is not installed at the front of the PSV (Case A), If a shut-off valve is installed at the front of the PSV for inspection (Case B) and If a shut-off valve is installed in front of PSV (C.S.O), PSV is installed in parallel (Case C). Three types of cases were compared with FTA and HAZOP. The results of study of the possible accidents due to over-pressure safety valve installation type, used in a high-pressure gas facilities was shows in the following order Case B > Case A > Case C. The results of analysis through FTA was in order to protect the reservoir for the possible occurring of accident the safety valve installation is depend on its type. In the FTA analysis, defects in the device itself which attached to the storage tank as a substitute for analysis of the probability of operator mistakes was Case B with as high as $2.01{\times}10^{-6}$. Depending on the type of installation analysis of Case B in order to ensure safety is prohibited to install shut-off valve and believes that mandatory regulations are needed. Rationally installing of pressure safety valve in the high pressure using facilities will be expected to improve the industrial safety from severe accidents such as high-pressure gas fire explosion.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.

A Study on Classification of Explosion Hazardous Area for Facilities using Lighter-than-Air Gases (공기보다 가벼운 가스 사용시설의 폭발위험장소 설정방안에 대한 연구)

  • Yim, Ji-Pyo;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.24-30
    • /
    • 2014
  • There have been controversies over whether explosion hazardous area(EHA) should be classified for facilities which use lighter-than-air gases such as city gas, hydrogen and ammonia. Two view points are confronting each other: an economic piont of view that these gases are lighter than air and disperse rapidly, hence do not form EHA upon release into the atmosphere, and a safety point of view that they are also inflammable gases, hence can form EHA although the extent is limited compared to heavy gases. But various standards such as KS, IEC, API, NFPA do not exclude light gases when classifying EHA and present examples of EHA for light gas facilities. This study calculates EHA using the hypothetical volume in the IEC code where the hole sizes required for the calculation were selected according to various nominal pipe sizes in such a way to conform to the EHA data in the API code and HSL. Then, 25 leakage scenarios were suggested for 5 different pipe sizes and 5 operating pressures that cover typical operating conditions of light gas facilities. The EHA for the minimum leakage scenario(25 mm pipe, 0.01MPa pressure) was found to correspond to a hypothetical volume larger than 0.1 $m^3$(medium-level ventilation). This confirms the validity of classifying EHA for facilities using lighter-than-air gases. Finally, a computer program called HACPL was developed for easy use by light gas facilities that classifies EHA according to operating pressures and pipe sizes.