• Title/Summary/Keyword: explainable AI

Search Result 59, Processing Time 0.022 seconds

Deep learning classification of transient noises using LIGOs auxiliary channel data

  • Oh, SangHoon;Kim, Whansun;Son, Edwin J.;Kim, Young-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.74.2-75
    • /
    • 2021
  • We demonstrate that a deep learning classifier that only uses to gravitational wave (GW) detectors auxiliary channel data can distinguish various types of non-Gaussian noise transients (glitches) with significant accuracy, i.e., ≳ 80%. The classifier is implemented using the multi-scale neural networks (MSNN) with PyTorch. The glitches appearing in the GW strain data have been one of the main obstacles that degrade the sensitivity of the gravitational detectors, consequently hindering the detection and parameterization of the GW signals. Numerous efforts have been devoted to tracking down their origins and to mitigating them. However, there remain many glitches of which origins are not unveiled. We apply the MSNN classifier to the auxiliary channel data corresponding to publicly available GravitySpy glitch samples of LIGO O1 run without using GW strain data. Investigation of the auxiliary channel data of the segments that coincide to the glitches in the GW strain channel is particularly useful for finding the noise sources, because they record physical and environmental conditions and the status of each part of the detector. By only using the auxiliary channel data, this classifier can provide us with the independent view on the data quality and potentially gives us hints to the origins of the glitches, when using the explainable AI technique such as Layer-wise Relevance Propagation or GradCAM.

  • PDF

Data-driven Approach to Explore the Contribution of Process Parameters for Laser Powder Bed Fusion of a Ti-6Al-4V Alloy

  • Jeong Min Park;Jaimyun Jung;Seungyeon Lee;Haeum Park;Yeon Woo Kim;Ji-Hun Yu
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2024
  • In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.

An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining (베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템)

  • Yun, Jiyoung;Shin, Gun-Yoon;Kim, Dong-Wook;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

A New Head Pose Estimation Method based on Boosted 3-D PCA (새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.105-109
    • /
    • 2021
  • In this paper, we evaluate Boosted 3-D PCA as a Dataset and evaluate its performance. After that, we will analyze the network features and performance. In this paper, the learning was performed using the 300W-LP data set using the same learning method as Boosted 3-D PCA, and the evaluation was evaluated using the AFLW2000 data set. The results show that the performance is similar to that of the Boosted 3-D PCA paper. This performance result can be learned using the data set of face images freely than the existing Landmark-to-Pose method, so that the poses can be accurately predicted in real-world situations. Since the optimization of the set of key points is not independent, we confirmed the manual that can reduce the computation time. This analysis is expected to be a very important resource for improving the performance of network boosted 3-D PCA or applying it to various application domains.

Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning (CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류)

  • Yim, Ji Yeong;Do, Thanh Cong;Kim, Soo Hyung;Lee, Guee Sang;Lee, Min Hee;Min, Jung Joon;Bom, Hee Seung;Kim, Hyeon Sik;Kang, Sae Ryung;Yang, Hyung Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

A COVID-19 Chest X-ray Reading Technique based on Deep Learning (딥 러닝 기반 코로나19 흉부 X선 판독 기법)

  • Ann, Kyung-Hee;Ohm, Seong-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.789-795
    • /
    • 2020
  • Many deaths have been reported due to the worldwide pandemic of COVID-19. In order to prevent the further spread of COVID-19, it is necessary to quickly and accurately read images of suspected patients and take appropriate measures. To this end, this paper introduces a deep learning-based COVID-19 chest X-ray reading technique that can assist in image reading by providing medical staff whether a patient is infected. First of all, in order to learn the reading model, a sufficient dataset must be secured, but the currently provided COVID-19 open dataset does not have enough image data to ensure the accuracy of learning. Therefore, we solved the image data number imbalance problem that degrades AI learning performance by using a Stacked Generative Adversarial Network(StackGAN++). Next, the DenseNet-based classification model was trained using the augmented data set to develop the reading model. This classification model is a model for binary classification of normal chest X-ray and COVID-19 chest X-ray, and the performance of the model was evaluated using part of the actual image data as test data. Finally, the reliability of the model was secured by presenting the basis for judging the presence or absence of disease in the input image using Grad-CAM, one of the explainable artificial intelligence called XAI.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.