• 제목/요약/키워드: experimental techniques

검색결과 3,187건 처리시간 0.035초

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정: 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Journal of Intelligence and Information Systems
    • /
    • 제9권1호
    • /
    • pp.227-249
    • /
    • 2003
  • Prediction of corporate failure using past financial data is a well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as model construction process. Irrespective of the efficiency of a teaming procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network model. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables fur neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

IN-LINE NIR SPECTROSCOPY AS A TOOL FOR THE CONTROL OF FERMENTATION PROCESSES IN THE FERMENTED MEATS INDUSTRY

  • Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3104-3104
    • /
    • 2001
  • The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.

  • PDF

A Practical Feature Extraction for Improving Accuracy and Speed of IDS Alerts Classification Models Based on Machine Learning (기계학습 기반 IDS 보안이벤트 분류 모델의 정확도 및 신속도 향상을 위한 실용적 feature 추출 연구)

  • Shin, Iksoo;Song, Jungsuk;Choi, Jangwon;Kwon, Taewoong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제28권2호
    • /
    • pp.385-395
    • /
    • 2018
  • With the development of Internet, cyber attack has become a major threat. To detect cyber attacks, intrusion detection system(IDS) has been widely deployed. But IDS has a critical weakness which is that it generates a large number of false alarms. One of the promising techniques that reduce the false alarms in real time is machine learning. However, there are problems that must be solved to use machine learning. So, many machine learning approaches have been applied to this field. But so far, researchers have not focused on features. Despite the features of IDS alerts are important for performance of model, the approach to feature is ignored. In this paper, we propose new feature set which can improve the performance of model and can be extracted from a single alarm. New features are motivated from security analyst's know-how. We trained and tested the proposed model applied new feature set with real IDS alerts. Experimental results indicate the proposed model can achieve better accuracy and false positive rate than SVM model with ordinary features.

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • 제17B권5호
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • 제15B권2호
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

An Efficient Query-based XML Access Control Enforcement Mechanism (효율적인 질의 기반 XML 접근제어 수행 메커니즘)

  • Byun, Chang-Woo;Park, Seog
    • Journal of KIISE:Databases
    • /
    • 제34권1호
    • /
    • pp.1-17
    • /
    • 2007
  • As XML is becoming a de facto standard for distribution and sharing of information, the need for an efficient yet secure access of XML data has become very important. To enforce the fine-level granularity requirement, authorization models for regulating access to XML documents use XPath which is a standard for specifying parts of XML data and a suitable language for both query processing. An access control environment for XML documents and some techniques to deal with authorization priorities and conflict resolution issues are proposed. Despite this, relatively little work has been done to enforce access controls particularly for XML databases in the case of query access. Developing an efficient mechanism for XML databases to control query-based access is therefore the central theme of this paper. This work is a proposal for an efficient yet secure XML access control system. The basic idea utilized is that a user query interaction with only necessary access control rules is modified to an alternative form which is guaranteed to have no access violations using tree-aware metadata of XML schemes and set operators supported by XPath 2.0. The scheme can be applied to any XML database management system and has several advantages over other suggested schemes. These include implementation easiness, small execution time overhead, fine-grained controls, and safe and correct query modification. The experimental results clearly demonstrate the efficiency of the approach.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • 제27권2호
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Effects of Cervical Joint Mobilization on the Forward Head Posture and Neck Disability Indexes (경부관절가동술이 두부전방자세와 경부장애지수에 미치는 영향)

  • Oh, Hyunju;Hwang, Byeongjun;Choi, Yoorim
    • Journal of the Korean Society of Radiology
    • /
    • 제8권2호
    • /
    • pp.89-96
    • /
    • 2014
  • This paper tries to examine whether the application of joint mobilization to subjects who have the forward head posture due to malalignment in the cervical joint has influence on posture changes and functions in the cervical joint. The subjects were 39 students from G University in Gyeongsangbuk-do. The cervical joint mobilization was applied to 20 subjects and not to 19. The students with a cervical lordosis angle of $21^{\circ}C$ or less, an anterior weight bearing (AWB) of 15mm or greater, and a cervical extension ROM of $70^{\circ}C$ or less in terms of radiography were selected as subjects under their voluntary agreement. The patients actively performed the joint mobilization slowly 8 times per session while therapists continuously applied sustained accessory glide to their painful joints 3 times per week for 4 weeks along with the cervical expansion and flexion in SNAGS among other Mulligan's (1995) techniques. The measurement was carried out in terms of radiographic inspection and neck disability indexes. As a result of the experiment, it turned out that the subjects with the forward head posture had changes in the cervical AWB and ARA, the ranges of expansion and flexion, and the NDI(Neck Disability Index) after the intervention for the experimental group by applying cervical joint mobilization. There were no changes observed in the control group. In conclusion, the application of joint mobilization turned out to have influence on the improvement of cervical joint postures, and craniocervical region functions.

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제45권6호
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Building the Data Mart on Antibiotic Usage for Infection Control (감염관리를 위한 항생제 사용량 데이터마트의 구축)

  • Rheem, Insoo
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제48권4호
    • /
    • pp.348-354
    • /
    • 2016
  • Data stored in hospital information systems has a great potential to improve adequacy assessment and quality management. Moreover, an establishment of a data warehouse has been known to improve quality management and to offer help to clinicians. This study constructed a data mart that can be used to analyze antibiotic usage as a part of systematic and effective data analysis of infection control information. Metadata was designed by using the XML DTD method after selecting components and evaluation measures for infection control. OLAP-a multidimensional analysis tool-for antibiotic usage analysis was developed by building a data mart through modeling. Experimental data were obtained from data on antibiotic usage at a university hospital in Cheonan area for one month in July of 1997. The major components of infection control metadata were antibiotic resistance information, antibiotic usage information, infection information, laboratory test information, patient information, and infection related costs. Among them, a data mart was constructed by designing a database to apply antibiotic usage information to a star schema. In addition, OLAP was demonstrated by calculating the statistics of antibiotic usage for one month. This study reports the development of a data mart on antibiotic usage for infection control through the implementation of XML and OLAP techniques. Building a conceptual, structured data mart would allow for a rapid delivery and diverse analysis of infection control information.