• Title/Summary/Keyword: experimental system identification

Search Result 654, Processing Time 0.024 seconds

In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions (전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명)

  • Ha, Young-Ho;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.

Identification of nonlinear systems through statistical analysis of the dynamic response

  • Breccolotti, Marco;Pozzuoli, Chiara
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.195-213
    • /
    • 2020
  • In this paper an extension to the method for the identification of mechanical parameters of nonlinear systems proposed in Breccolotti and Materazzi (2007) for MDoF systems is presented. It can be used for damage identification purposes when damage modifies the linear characteristics of the investigated structure. It is based on the following two main features: the solution of the Fokker-Planck equation that describes the response probabilistic properties of the system when it is excited by external Gaussian loads; and a model updating technique that minimizes the differences between the response of the actual system and that of a parametric system used to identify the unknown parameters. Numerical analysis, that simulate virtual experimental tests, are used in the paper to show the capabilities of the method and to analyse the conditions required for its application.

Realization for Image Searching Engine with Moving Object Identification and Classification

  • Jung, Eun-Suk;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.301-304
    • /
    • 2007
  • A realization for image searching engine with moving objects identification and classification is presented in this paper. The identification algorithm is applied to extract difference image between input image and the reference image, and the classification is used the region segmentation. That is made the database for the searching engine. The experimental result of the realized system enables to search for human and animal at time intervals to use a surveillant system at inside environment.

  • PDF

Combination of Classifiers Decisions for Multilingual Speaker Identification

  • Nagaraja, B.G.;Jayanna, H.S.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.928-940
    • /
    • 2017
  • State-of-the-art speaker recognition systems may work better for the English language. However, if the same system is used for recognizing those who speak different languages, the systems may yield a poor performance. In this work, the decisions of a Gaussian mixture model-universal background model (GMM-UBM) and a learning vector quantization (LVQ) are combined to improve the recognition performance of a multilingual speaker identification system. The difference between these classifiers is in their modeling techniques. The former one is based on probabilistic approach and the latter one is based on the fine-tuning of neurons. Since the approaches are different, each modeling technique identifies different sets of speakers for the same database set. Therefore, the decisions of the classifiers may be used to improve the performance. In this study, multitaper mel-frequency cepstral coefficients (MFCCs) are used as the features and the monolingual and cross-lingual speaker identification studies are conducted using NIST-2003 and our own database. The experimental results show that the combined system improves the performance by nearly 10% compared with that of the individual classifier.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Performance Improvement of Voting-based Speaker Identification System by using the Observation Confidence (관측신뢰도 적용에 의한 투표기법 기반의 화자인식시스템의 성능향상)

  • Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.79-88
    • /
    • 2008
  • Recently demands for the speech technology-based products targeted for the mobile terminals such as cellular phones and PDA are rapidly increasing. And voting-based speaker identification algorithm is known to have a good performance in the mobile environment, since it works well with small amount of speaker training data. In this paper, we proposed a method to improve the performance of this voting based speaker identification system by using the observation confidence value which is derived from the function of SNR each frame. The proposed method is evaluated with ETRI cellular phone DB which is made for the speaker recognition task. The experimental results show that the proposed method has better performance of 2-3% identification rate than the conventional GMM method.

  • PDF

Effective Gas Identification Model based on Fuzzy Logic and Hybrid Genetic Algorithms

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.329-338
    • /
    • 2012
  • This paper presents an effective design method for a gas identification system. The design method adopted the sequential combination between the hybrid genetic algorithms and the TSK fuzzy logic system. First, the sensor grouping method by hybrid genetic algorithms led the effective dimensional reduction as well as effective pattern analysis from a large volume of pattern dimensions. Second, the fuzzy identification sub-models allowed handling the uncertainty of the sensor data extensively. By these advantages, the proposed identification model demonstrated high accuracy rates for identifying the five different types of gases; it was confirmed throughout the experimental trials.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification (진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

System Identification for Structural Vibration of Layered Stone Pagoda System (적층식 석탑의 진동 시스템 인식)

  • Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.237-244
    • /
    • 2017
  • This study proposes a numerical model to explain the closely placed double modes in the vibration of a layered stone pagoda system. The friction surface between the stones is modelled as the Timoshenko finite element while each stone layer is modelled as a rigid body. It is assumed that the irregular asperity on the friction surface enables the stone to be excited. This results in the closely placed modes that are composed of natural modes and self-excited modes. To examine the validity of the proposed model, a set of modal testing and analysis for a layered stone pagoda mock-up model has been conducted and a set of closely placed double modes are extracted. Applying the extended sensitivity-based system identification technique, the various system parameters are identified so that the modal parameters of the proposed numerical model are the same with those of the experimental mock-up. For a horizontal impulse excitation, the simulated acceleration responses are compared with measurements.