• Title/Summary/Keyword: experimental mechanics

Search Result 1,873, Processing Time 0.025 seconds

Size effect in concrete blocks under local pressure

  • Ince, R.;Arici, E.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.567-580
    • /
    • 2005
  • Numerous tests on concrete structure members under local pressure demonstrated that the compressive strength of concrete at the loaded surface is increased by the confinement effect provided by the enveloping concrete. Even though most design codes propose specific criteria for preventing bearing failure, they do not take into consideration size effect which is an important phenomenon in the fracture mechanics of concrete/reinforced concrete. In this paper, six series of square prism concrete blocks with three different depths (size range = 1:4) and two different height/depth ratios of 2 and 3 are tested under concentrated load. Ultimate loads obtained from the test results are analysed by means of the modified size effect law (MSEL). Then, a prediction formula, which considers effect of both depth and height on size effect, is proposed. The developed formula is compared with experimental data existing in the literature. It is concluded that the observed size effect is in good agreement with the MSEL.

Transient response analysis of tapered FRP poles with flexible joints by an efficient one-dimensional FE model

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.243-259
    • /
    • 2016
  • This research develops a finite element code for the transient dynamic analysis of tapered fiber reinforced polymer (FRP) poles with hollow circular cross-section and flexible joints used in power transmission lines. The FRP poles are modeled by tapered beam elements and their flexible joints by a rotational spring. To solve the time equations of transient dynamic analysis, precise time integration method is utilized. In order to verify the utilized formulations, a typical jointed FRP pole under step, triangular and sine pulses is analyzed by the developed finite element code and also ANSYS commercial finite element software for comparison. Thereafter, the effect of joint flexibility on its dynamic behavior is investigated. It is observed that by increasing the joint stiffness, the amplitude of the pole tip deflection history decreases, and the time of occurrence of the maximum deflection is earlier.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage (the 1st Report) -Development of Elasto-Plastic Damage Constitutive Model- (등방성 손상을 고려한 탄소성 대변형 문제의 유한요소해석(제1보) -탄소성 손상 구성방정식 개발-)

  • 노인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In this paper a new constitutive model for ductile materials was proposed. This model can describe the material degradation due to the evolution of isotropic damage during elasto-platic deformation. The plastic flow rule was derived under the framework of thermodynamic approach of continuum damage mechanics(CDM) in which plastic strain hardening parameters and isotropic damage were taken as thermodynamic state variables. And the process to determine material constants for constitutive model using an experimental data was presented.

  • PDF

Control of chaotic dynamics by magnetorheological damping of a pendulum vibration absorber

  • Kecik, Krzysztof
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.743-754
    • /
    • 2014
  • Investigations of regular and chaotic vibrations of the autoparametric pendulum absorber suspended on a nonlinear coil spring and a magnetorheological damper are presented in the paper. Application of a semi-active damper allows controlling the dangerous motion without stooping of system and additionally gives new possibilities for designers. The investigations are curried out close to the main parametric resonance. Obtained numerical and experimental results show that the semi-active suspension may reduce dangerous motion and it also allows to maintain the pendulum at a given attractor or to jump to another one. Moreover, the results show that, for some parameters, MR damping may transit to chaotic motions.

Maximum Vortex-Induced Vibrations of a square prism

  • Barrero-Gil, A.;Fernandez-Arroyo, P.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.341-354
    • /
    • 2013
  • This paper presents an experimental investigation concerning the peak amplitudes of oscillation of a square prism due to Vortex-Induced-Vibrations (VIV) as a function of the mass damping parameter $m^*{\zeta}$ (the so called Griffin--plot); $m^*$ and ${\zeta}$ being, respectively, the non-dimensional mass and the mechanical (structural) damping ratio. With this purpose in mind, an electromagnetic actuator has been employed to provide controlled damping. During the experiments the mass--damping parameter was in the range 0.15 < $m^*{\zeta}$ < 2.4. Experiments show that there is a value of $m^*{\zeta}$ below which VIV appears combined with galloping and the prism oscillation increases monotonically with the incoming flow velocity. For $m^*{\zeta}$ >0.3 the present experiments show a well-defined VIV phenomenon and, consequently, a Griffin-plot can be defined.

Green Body Behaviour of High Velocity Pressed Metal Powder

  • Jonsen, P.;Haggblad, H.A.;Troive, L.;Furuberg, J.;Allroth, S.;Skoglund, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.22-23
    • /
    • 2006
  • High velocity compaction (HVC) is a production technique with capacity to significantly improve the mechanical properties of powder metallurgy (PM) parts. Investigated here are green body data such as density, tensile strength, radial springback, ejection force and surface flatness. Comparisons are performed with conventional compaction using the same pressing conditions. Cylindrical samples of a pre-alloyed water atomized iron powder are used in this experimental investigation. The HVC process in this study resulted in a better compressibility curve and lower ejection force compared to conventional quasi static pressing. Vertical scanning interferometry measurements show that the HVC process gives flatter sample surfaces.

  • PDF

Characteristic analysis of RCD clamp for reducing voltage stress of Flyback converter (플라이백 컨버터의 전압 스트레스 저감을 위한 RCD클램프의 특성 분석)

  • Jeong, Jin-Woo;Lim, Jeong-Gyu;Chung, Se-Kyo;Kim, Jong-Hae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.5-6
    • /
    • 2010
  • RCD clamp is used for a low cost flyback converter to clamp the voltage spikes caused by the leakage inductance of the flyback transformer. In this paper, the operational characteristics of the flyback converter with the clamp circuit are analyzed using an equivalent circuit. The simulation and experimental results are provided to verify the proposed analysis.

  • PDF

Random loading identification of multi-input-multi-output structure

  • Zhi, Hao;Lin, Jiahao
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.359-369
    • /
    • 2000
  • Random loading identification has long been a difficult problem for Multi-Input-Multi-Output (MIMO) structure. In this paper, the Pseudo Excitation Method (PEM), which is an exact and efficient method for computing the structural random response, is extended inversely to identify the excitation power spectral densities (PSD). This identified method, named the Inverse Pseudo Excitation Method (IPEM), resembles the general dynamic loading identification in the frequency domain, and can be used to identify the definite or random excitations of complex structures in a similar way. Numerical simulations are used to reveal the the difficulties in such problems, and the results of some numerical analysis are discussed, which may be very useful in the setting up and processing of experimental data so as to obtain reasonable predictions of the input loading from the selected structural responses.

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening

  • Yang, Ronggang;Wang, Naige;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.481-492
    • /
    • 2022
  • Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.