Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.4.481

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening  

Yang, Ronggang (College of Mechanical and Electrical Engineering, Wenzhou University)
Wang, Naige (College of Mechanical and Electrical Engineering, Wenzhou University)
Xiang, Jiawei (College of Mechanical and Electrical Engineering, Wenzhou University)
Publication Information
Structural Engineering and Mechanics / v.81, no.4, 2022 , pp. 481-492 More about this Journal
Abstract
Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.
Keywords
axial pre-tightening; critical compression coefficient; cycloidal ball planetary transmission; no-backlash; normal force;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Sun, P.F, An, Z.J. and Jiang, W. (2018), "Analysis of non-Hertz contact stress and bearing capacity on meshing pairs in a real-time non-clearance precision ball transmission", J. Brazil. Soc. Mech. Sci. Eng., 40(6), 1-11. https://doi.org/10.1007/s40430-018-1197-2.   DOI
2 Terada, H. and Imase, K. (2009), "Fundamental analysis of a cycloid ball reducer (5th Report)-development of a two stage type reduction mechanism", Int. J. JPN. S. Precis. Eng., 75, 1418-1422. https://doi.org/10.2493/jjspe.75.1418.   DOI
3 Terada, H., Makino, H. and Imase, K. (1995), "Fundamental analysis of cycloid ball reducer (3rd report)-strength design", Int. J. JPN. S. Precis. Eng., 61, 1705-1709. https://doi.org/10.2493/jjspe.61.1705.   DOI
4 Verl, A., Frey, S. and Heinze, T. (2014), "Double nut ball screw with improved operating characteristics", Cirp. Ann-Manuf. Techn., 63, 361-364. https://doi.org/10.1016/j.cirp.2014.03.128.   DOI
5 Wan, F., Li, G.X., Gong, J.Z. and Wu, B.Z. (2016), "Dynamic study of anti-backlash gears and angle-contact ball bearing based on a simplification of the Hertz contact theory", Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 230, 66-82. https://doi.org/10.1177/0954405414554016.   DOI
6 Zhang, C., Wang, S.P., Wang, Z.M. and Wang, X.J. (2015), "An accelerated life test model for harmonic drives under a segmental stress history and its parameter optimization", Chin. J. Aeronaut. 28, 1758-1765. https://doi.org/10.1016/j.cja.2015.07.003.   DOI
7 Chen, B.K., Zhong, H., Liu, J.Y., Li, C.Y. and Fang, T.T. (2012), "Generation and investigation of a new cycloid drive with double contact", Mech. Mach. Theory, 49, 270-283. https://doi.org/10.1016/j.mechmachtheory.2011.10.001.   DOI
8 Park, J., Jeon, B., Park, J., Cui, J., Kim, M. and Youn, B.D. (2018), "Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance", Smart. Struct. Syst., 22(2), 185-192. https://doi.org/10.12989/sss.2018.22.2.185.   DOI
9 Chang, J.C., Wu, S.S.J. and Hung, J.P. (2007), "Characterization of the dynamic behavior of a linear guideway mechanism". Struct. Eng. Mech., 25(1), 1-20. https://doi.org/10.12989/sem.2007.25.1.001.   DOI
10 Zhou, C.G., Feng, H.T., Chen, Z.T. and Ou, Y. (2016), "Correlation between preload and no-load drag torque of ball screws", Int. J. Mach. Tool. Manuf., 102, 35-40. https://doi.org/10.1016/j.ijmachtools.2015.11.010.   DOI
11 Duan, L.Y., An, Z.J., Yang, R.G. and Fu, Z.Q. (2016), "Mechanical model of coupling rolling and sliding friction in real-time non-clearance precision ball transmission", Tribol. Int., 103, 218-227. https://doi.org/10.1016/j.triboint.2016.06.032.   DOI
12 An, Z.J., Yang, R.G. and Yi, Y.L. (2016), "Research on engagement normal force and elastic backlash of the precision ball transmission", J. Mech. Eng., 52, 42-48. https://doi.org/10.3901/JME.2016.09.042.   DOI
13 Beckerle, P., Wojtusch, J., Rinderknecht, S. and Stryk, O.V. (2014), "Analysis of system dynamic influences in robotic actuators with variable stiffness", Smart Struct. Syst., 13(4), 711-730. https://doi.org/10.12989/sss.2014.13.4.711.   DOI
14 Brauer, J. (2005), "Transmission error in anti-backlash conical involute gear transmissions: A global-local FE approach", Finite Elem. Anal. Des., 41, 431-457. https://doi.org/10.1016/j.finel.2004.04.007.   DOI
15 Brethee, K.F., Zhen, D., Gu, F.S., Gu, F.S. and Ball, A.D. (2017), "Helical gear wear monitoring: Modelling and experimental validation", Mech. Mach. Theory, 117, 210-229. https://doi.org/10.1016/j.mechmachtheory.2017.07.012.   DOI
16 Chen, B.K., Wang, S.Y., Jiang, X.J., Fang, T.T. and Li, C.Y. (2007), "Manufacturing method for the conic cycloidal gear pair", J. Mech. Eng., 43, 147-151. https://doi.org/10.3901/jme.2007.01.147.   DOI
17 Karagiannidisa, A. and Vosniakos, G.C. (2014), "On low cost model-based monitoring of industrial robotic arms using standard machine vision", Adv. Robot. Res., 1(1), 81-99. https://doi.org/10.12989/arr.2014.1.1.081.   DOI
18 Rudolf, C., Martin, T. and Wauer, J. (2010), "Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string", Smart Struct. Syst., 6(2), 167-182. https://doi.org/10.12989/sss.2010.6.2.167.   DOI
19 Shim, S.B., Park, Y.J. and Kim, K.U. (2008), "Reduction of PTO rattle noise of an agricultural tractor using an anti-backlash gear", Biosyst. Eng., 100, 346-354. https://doi.org/10.1016/j.biosystemseng.2008.04.002.   DOI
20 Besharati, S.R., Dabbagh, V., Amini, H., Sarhan, A.A.D., Akbari, J. and Hamdi, M. (2015), "Nonlinear dynamic analysis of a new antibacklash gear mechanism design for reducing dynamic transmission error", J. Mech. Des., 137, 054502. https://doi.org/10.1115/1.4029582.   DOI
21 Dong, B., Liu, K.P. and Li, Y.C. (2017), "Decentralized control of harmonic drive based modular robot manipulator using only position measurements: theory and experimental verification", J. Intell. Robot. Syst., 88, 3-18. https://doi.org/10.1007/s10846-017-0521-x.   DOI
22 Ebrahimi, S., Salahshoor, E. and Moradi, S. (2017), "Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure". Struct. Eng. Mech., 63(5), 691-702. https://doi.org/10.12989/sem.2017.63.5.691.   DOI
23 Feng, K., Borghesani, P., Smith, W.A., Randall, R.B., Chin, Z.Y., Ren, J.Z. and Peng, Z.X. (2019), "Vibration-based updating of wear prediction for spur gears", Wear, 426, 1410-1415. https://doi.org/10.1016/j.mechmachtheory.2011.10.001.   DOI
24 Montazeri-Gh, M. and Kavianipour, O. (2014), "Investigation of the semi-active electromagnetic damper", Smart Struct. Syst., 13(3), 419-434. https://doi.org/10.12989/sss.2014.13.3.419.   DOI
25 Myung, H., Wang, Y., Kang, S.C.J. and Chen, X.Q. (2014), "Survey on robotics and automation technologies for civil infrastructure", Smart Struct. Syst., 13(6), 891-899. https://doi.org/10.12989/sss.2014.13.6.891.   DOI
26 Yang, R.G. and An, Z.J. (2017), "Theoretical calculation and experimental verification of the elastic angle of a cycloid ball planetary transmission based on the axial pretightening force", Adv. Mech. Eng., 9, 1-17. https://doi.org/10.1177/1687814017734112.   DOI
27 Terada, H. (2010), "The development of gearless reducers with rolling balls", J. Mech. Sci. Technol., 24, 189-195. https://doi.org/10.1007/s12206-009-1155-0.   DOI
28 Tsai, P.C., Cheng, C.C. and Hwang, Y.C. (2014), "Ball screw preload loss detection using ball pass frequency", Mech. Syst. Signal Pr., 48, 77-91. https://doi.org/10.1016/j.ymssp.2014.02.017.   DOI
29 Pham, A.D. and Ahn, H.J. (2018), "High precision reducers for industrial robots driving 4th industrial revolution: State of arts, analysis, design, performance evaluation and perspective", Int. J. Prec. Eng. Manuf.-Green Technol., 5, 519-533. https://doi.org/10.1007/s40684-018-0058-x.   DOI
30 Xu, L.Z., Li, H.Y. and Li, C. (2016), "Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system", Struct. Eng. Mech., 60(6), 1079-1092. https://doi.org/10.1115/1.4026262.   DOI
31 Zhang, Y., An, Z.J. and Liu, Z.Q. (2019), "A dynamic model and modal analysis of a precision ball transmission system", J. Vib. Shock, 4(38), 166-174. https://doi.org/10.13465/j.cnki.jvs.2019.04.026.   DOI
32 Zhao, J.I., Yan, S.Z. and Wu, J.N. (2014), "Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method", Acta Astronaut., 98, 86-96. https://doi.org/10.1016/j.cja.2015.07.003.   DOI
33 Stevens, A.B. and Hrenya, C.M. (2005), "Comparison of soft-sphere models to measurements of collision properties during normal impacts", Powder Technol., 154, 99-109. https://doi.org/10.1016/j.powtec.2005.04.033.   DOI
34 Qu, W.T., Peng, X.Q., Zhao, N. and Guo, H. (2012), "Finite element generalized tooth contact analysis of double circular arc helical gears", Struct. Eng. Mech., 43(4), 439-448. https://doi.org/10.12989/sem.2012.43.4.439.   DOI
35 Shen, Z.X., Qiao, B.J., Yang, L.H., Luo, W. and Chen, X.F. (2019), "Evaluating the influence of tooth surface wear on TVMS of planetary gear set", Mech. Mach. Theory, 136, 206-223. https://doi.org/10.1016/j.mechmachtheory.2019.03.014.   DOI
36 Shi, S.Y., Lin, J., Wang, X.F. and Xu, X.Q. (2015), "Analysis of the transient backlash error in CNC machine tools with closed loops", Int. J. Mach. Tool. Manuf., 93, 49-60. https://doi.org/10.1016/j.ijmachtools.2015.03.009.   DOI