• Title/Summary/Keyword: experimental mechanics

Search Result 1,873, Processing Time 0.024 seconds

Effect of structural voids on mesoscale mechanics of epoxy-based materials

  • Tam, Lik-ho;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.355-369
    • /
    • 2016
  • Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Mechanics of Micro-Damage at Contact portion of Two Grains (두 입자의 접촉면에서의 손상역학 해석)

  • 정교철;김원영
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.231-243
    • /
    • 1994
  • To better understand the fundamental problems of the true micro-damage in medium-grained granite under uniaxial compressive stress, micro-damage localization, initiation and propagation have been observed in a great detail in contact portion of two grains such as quartz and feldspar. For this purpose, new experimental system allowing us to observe the micro-damaging process continuously was developed. Earlier studies used the specimens of unloaded state and it is difficult to visualize stress-induced microcracks under unloading state. Thus, direct observation under loading state is very important for understanding the true micro-damage process. The results explain well the mechanism of micro-damage at two grains, and mechanics of the micro-damage is clarified well by Hertzian fracture mechanics.

  • PDF

High density line patterns fabricated by thermal imprint (Thermal imprint를 이용한 고밀도 line패턴 형성방법)

  • Lee, Sang-Moon;Kwak, Jung-Bok;Lee, Hwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.270-270
    • /
    • 2008
  • We present details of experimental results in the fabrication of high density line patterns, using imprint technique that can provide a simple and comparatively cost-effective manufacturing means. Barrier array structures for display or interconnects for semiconductor applications were the aims of this study. For pattern fabrication, a polymer layer (Ajinomoto GX-13 dielectric film) with a thickness of 38um that can act as either an insulating or a dielectric layer was laminated on a substrate. Fine tracks were then formed using a patterned stamp under isostatic pressure. The line width was ranged between 10 to 60 mm. A self-assembled monolayer (SAM) of fluorinated alkylchlorosilane [$CF_3(CF_2)5(CH_2)2SiCl_3$] as an anti-sticking layer was coated on the surface of the stamp prior to thermal imprint to improve the de-molding characteristic.

  • PDF

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Numerical model for bolted T-stubs with two bolt rows

  • Daidie, Alain;Chakhari, Jamel;Zghal, Ali
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.343-361
    • /
    • 2007
  • This article presents a numerical tool for dimensioning two-threaded fasteners connecting prismatic parts subjected to fatigue tension loads that are coplanar with the screw axis. A simplified numerical model is developed from unidirectional finite elements, modeling the connected parts and screws with bent elements and the elastic contact layer between the parts with springs. An algorithm updating the contact stiffness matrix, calculating forces and displacements at each node of the structure and thus normal stresses in the screws in both static and fatigue is further developed using C language. An experimental study is also conducted in parallel with the numerical approach to validate the developed model assumptions, the numerical model and the 3D finite element results. Since stiffness values for the compressive zones in the parts are analytically difficult to determine, a statistical software method is used, from which a tuning factor is derived for identifying these stiffness values. The method is also applied to set out the influence of each parameter on the fatigue behaviour of each screw. Finally, the developed model will be used to establish a new, sophisticated, fast and accurate tool for dimensioning bolted mechanical structures.

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation

  • Zhou, Dabiao;Wang, Dejiang;Huo, Lijun;Jia, Ping
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.752-761
    • /
    • 2016
  • Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging quality and the precision of the subsequent processing. In this paper, a variational model is proposed by employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional methods, we exploit the spectral correction and remove stripes in different bands and different regions adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the minimization problem, which contains two unsmooth and inseparable $l_1$-norm terms, is optimized by the split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail information.

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.