• Title/Summary/Keyword: experimental dynamics

Search Result 1,818, Processing Time 0.037 seconds

Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train (캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발)

  • Lee, Jin-Ho;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.643-651
    • /
    • 2020
  • A capsule train runs inside a sub-vacuum tube and can reach very high speed due to the low air resistance. A capsule train uses a superconducting electrodynamic suspension (SC-EDS) method for levitation, which allows for a large levitation gap and does not require gap control. However, SC-EDS has inherent characteristics such as the large gap variation and a small damping effect in the levitation force, which can degrade the running stability and ride comfort. To overcome this, a stability improvement device should be designed and applied based on dynamic analysis. In this study, a 1/10 small-scale testbed was developed to replicate the dynamic characteristics of a capsule train and investigate the performance of stability improvement devices. The testbed is composed of a 6-degree-of-freedom Stewart platform for the realization of bogie motion, a secondary suspension with a running stabilization device, and a carbody. Based on the dynamic similarity law proposed by Jaschinski, the small-scale testbed was manufactured, and a bogie motion algorithm was applied with the consideration of guideway irregularity and levitation stiffness. The experimental results from the testbed were compared with simulation results to investigate the performance of the testbed.

A Study on Wind Distribution of Mountain Area by Spot Measurements and Simulations (실측 및 해석을 통한 단순 산악지형의 바람장 분포 연구)

  • Kimg, Eung-Sik;Lee, Byung-Doo;Cho, Min-Tae;Kim, Jang-Whan
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.13-21
    • /
    • 2014
  • Forest fire has a number of variables and since the effects of wind fields are bigger than any other variables, it is essential to know wind direction and velocity for the forest fire extinguishing techniques and the prediction of fire spread. With regards to the local area that has a high chance of forest fire, the data from meteorological observatory in the area is used for the estimation of wind velocity. It is relatively easy to obtain automatic weather station (AWS) data which are available for the whole nation. There is a chance that the data from the weather station may be different with the actual data at the mountain areas. In this study simply shaped hills (Sae-byeol hill of Jeju Island and port Ma-geum in An-myeon Island in the sea side) were selected as the experimental locations to minimize the distortion of the wind field by the adjacent geographic features. Spot measurements and analysis of computational fluid dynamics (CFD) for the given geographic features were conducted to examine and compare their consistency. As a conclusion It is possible to predict wind patterns in these simple locations.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite (소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구)

  • Kang, Myoung-Soo;Hwang, Jai-Hyuk;Bae, Jae-Sung;Park, Jean-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.757-764
    • /
    • 2015
  • Mathematical modeling of focal plane compensation device in the small earth-observation satellite camera has been conducted experimently for compensation of micro-vibration disturbance. The PZT actuators are used as control actuators for compensation device. It is quite difficult to build up mathematical model because of hysteresis characteristic of PZT actuators. Therefore, the compensation device system is assumed as a $2^{nd}$ order linear system and modeled by using MATLAB System Identification Toolbox. It has been found that four linear models of compensation device are needed to meet 10% error in the input frequency range of 0~50Hz. These models describe accurately the dynamics of compensation device in the 4 divided domains of the input frequency range of 0~50Hz, respectively. Micro-vibration disturbance can be compensated by feedback control strategy of switching four models appropriately according to the input frequency.

Vector Network Analyzer Ferromagnetic Resonance Study of Py Thin Films (Vector Network Analyzer를 이용한 Py 박막의 강자성공명연구)

  • Shin, Yong-Hwack;Ha, Seung-Seok;Kim, Duck-Ho;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Ferromagnetic resonance (FMR) measurement is an important experimental technique for the study of magnetic dynamics. We designed and set up the vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system with home made coplanar waveguides (CPW). We examined 10-, 20-, 40-nm thick Py thin films to test the performance of the VNA-FMR measurement system. We measured S-parameter (transmission/reflection coefficient) of Py thin films on a CPW. Resonance frequency is investigated from 2.5 to 7 GHz for a field range from 0 to 490 Oe. The VNA-FMR data shows the resonance frequency increment when the external magnetic field increases. We also investigated Gilbert damping constant of Py thin film using resonance frequency (${\omega}_r$) and linewidth ($\Delta\omega$). After investigating dependence of thickness, we find that an decrease in S-parameter intensity as Py thin film thickness decreases. And the FMR results show that the effective saturation magnetization, $M_{eff}$, increase from 7.205($\pm$0.013) kOe to 7.840($\pm$0.014) kOe, while the film thickness varies from 10 to 40 nm.

3D Modeling of Turbid Density Flow Induced into Daecheong Reservoir with ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청댐 유입탁수의 3차원 모델링)

  • Chung, Se-Woong;Lee, Heung-Soo;Ryoo, Jae-Il;Ryu, In-Gu;Oh, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1187-1198
    • /
    • 2008
  • Many reservoirs in Korea and their downstream environments are under increased pressure for water utilization and ecosystem management from longer discharge of turbid flood runoff compared to a natural river system. Turbidity($C_T$) is an indirect measurement of water 'cloudiness' and has been widely used as an important indicator of water quality and environmental "health". However, $C_T$ modeling studies have been rare due to lack of experimental data that are necessary for model validation. The objective of this study is to validate a coupled three-dimensional(3D) hydrodynamic and particle dynamics model (ELCOM-CAEDYM) for the simulation of turbid density flows in stratified Daecheong Reservoir using extensive field data. Three different groups of suspended solids (SS) classified by the particle size were used as model state variables, and their site-specific SS-$C_T$ relationships were used for the conversion between field measurements ($C_T$) and state variables (SS). The simulation results were validated by comparing vertical profiles of temperature and turbidity measured at monitoring stations of Haenam(R3) and Dam(R4) in 2004. The model showed good performance in reproducing the reservoir thermal structure and propagation of stream density flow, and the magnitude and distribution of turbidity in the reservoir were consistent with the field data. The 3D model and turbidity modeling framework suggested in this study can be used as a supportive tool for the best management of turbidity flow in other reservoirs that have similar turbidity problems.

Feasibility Calculation of FaSTMECH for 2D Velocity Distribution Simulation in Meandering Channel (사행하천의 2차원 유속분포 모의를 위한 FaSTMECH 모형의 적용성 검토)

  • Son, Geunsoo;You, Hojun;Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1753-1764
    • /
    • 2014
  • Numerical flow simulation models in the riverine environments have been widely utilized for analyzing flow dynamics in various degrees in researches and practical applications. However, most of the simulated results have been validated based on the data from indoor experimental models or very limited in-situ measurements. Therefore, it has been required to more accurately validate the performance of the numerical models in terms of the detailed field observations. In particular, it was also hard to validate the performances of the existing numerical models in the real meandered river channels that encompass more sophisticated flow and geometric structures. Recently, advancements of the modern flow measuring instrumentations such as acoustic Doppler current profilers (ADCPs) enabled us to efficiently acquire the detailed flow field in the broad range of river channels, thus that it became to be possible to accurately validate any numerical models with the field observations. In this study, based on the detailed flow measurements in a actual meandered river channel using ADCP, we validated FaSTMECH model in iRIC in terms of water surface elevation, which is relatively new but began to get highlighted in the research areas. As the validation site, a meandering channel in River Experiment Center of KICT was chosen, which has 6.5 m of width, 0.38m of flow depth, 1.54 m3/s of flow discharge, 0.61 m/s of mean flow velocity, and 1.2 of sinuosity. As results, whereas the FaSTMECH precisely simulated water surface elevation, simulated velocity field in the bend did not match well with ADCP dataset.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Magnetic Markers-based Autonomous Navigation System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량을 위한 자기표지 기반 무인 자율주행 시스템)

  • Byun, Yeun-Sub;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.297-304
    • /
    • 2015
  • Recently, the demand for a PRT(Personal Rapid Transit) system based on autonomous navigation is increasing. Accordingly, the applicability investigations of the PRT system on rail tracks or roadways have been widely studied. In the case of unmanned vehicle operations without physical guideways on roadways, to monitor the position of the vehicle in real time is very important for stable, robust and reliable guidance of an autonomous vehicle. The Global Positioning System (GPS) has been commercially used for vehicle positioning. However, it cannot be applied in environments as tunnels or interiors of buildings. The PRT navigation system based on magnetic markers reference sensing that can overcome these environmental restrictions and the vehicle dynamics model for its H/W configuration are presented in this study. In addition, the design of a control S/W dedicated for unmanned operation of a PRT vehicle and its prototype implementation for experimental validation on a pilot network were successfully achieved.

Microtubule and Chromatin Organization in Bovine Oocytes following Intracytoplasmic Injection of Spermatozoon, Sperm Head and Tail (소 난자에 있어서 세포질내 정자, 정자두부.미부 주입 후 미세소관과 염색질의 구조변화)

  • Do, J.T.;Jun, S.H.;Choi, J.T.;Kang, Y.S.;Lee, B.Y.;Kim, S.B.;Kim, N.H.;Lee, H.T.;Chung, K.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.301-309
    • /
    • 1997
  • The objective of this study was to determine the microtubule assembly and chromatin configuration during the first cell cycle in bovine oocytes following injection of spermatozoon, sperm head and tail. The microtubule and chromatin configuration was imaged with fluorescent labeled monoclonal ${\alpha}$-tubulin antibody and propidium iodide under laser scanning confocal microscope. Microtubule and chromatin dynamics in bovine oocytes following intracytoplasmic sperm injection (ICSI) were not different from those observed during in vitro fertilization (IVF). Following ICSI, the microtubular aster was observed around sperm midpiece. During pronuclear formation, the sperm aster was enlarged and seen around male and female pronuclei. At mitotic metaphase, the microtubular spindle assemble astral poles and chromosomes were aligned on the spindle equator. At mitosis, asters were concentrated to each spindle pole and they filled the cytoplasm. After injection of the isolated sperm head, the microtubular aster was not seen around sperm head in any cases (0/18). Instead, microtubules were organized from the cytoplasm, which filled the whole cytoplasm during pronuclear apposition. These microtubules seem to move male and female pronuclei. These results suggest that isolated sperm head can develop into normal pronucleus in mature bovine oocytes, and competent to participate syngamy with the ootid chromatin. The functional microtubules following isolated sperm head injection in bovine oocytes appeared to be organized solely from maternal stores.

  • PDF