Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.1.018

Vector Network Analyzer Ferromagnetic Resonance Study of Py Thin Films  

Shin, Yong-Hwack (Department of Physics, Inha University)
Ha, Seung-Seok (Department of Physics, Inha University)
Kim, Duck-Ho (Department of Physics, Inha University)
You, Chun-Yeol (Department of Physics, Inha University)
Abstract
Ferromagnetic resonance (FMR) measurement is an important experimental technique for the study of magnetic dynamics. We designed and set up the vector network analyzer ferromagnetic resonance (VNA-FMR) measurement system with home made coplanar waveguides (CPW). We examined 10-, 20-, 40-nm thick Py thin films to test the performance of the VNA-FMR measurement system. We measured S-parameter (transmission/reflection coefficient) of Py thin films on a CPW. Resonance frequency is investigated from 2.5 to 7 GHz for a field range from 0 to 490 Oe. The VNA-FMR data shows the resonance frequency increment when the external magnetic field increases. We also investigated Gilbert damping constant of Py thin film using resonance frequency (${\omega}_r$) and linewidth ($\Delta\omega$). After investigating dependence of thickness, we find that an decrease in S-parameter intensity as Py thin film thickness decreases. And the FMR results show that the effective saturation magnetization, $M_{eff}$, increase from 7.205($\pm$0.013) kOe to 7.840($\pm$0.014) kOe, while the film thickness varies from 10 to 40 nm.
Keywords
ferromagnetic resonance; vector network analyzer; coplanar waveguide; gilbert damping constant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. A. Yager and R. M. Bozorth, Phys. Rev., 72, 80 (1947).   DOI
2 C. Kittel, Phys. Rev., 73, 155 (1948).   DOI
3 B. Heinrich and J. Bland, Ultrathin Magnetic Structure, Springer, Berlin (1994) pp. 195~222.
4 D. M. Pozar, Microwave Engineering, John Wiley & Son, New York (1998) pp. 160~167.
5 W. Dietrich, W. E. Proebster, and P. Wolf, IBM Journal, 189 (1960).
6 P. Wolf, J. Appl. Phys., 32, S95 (1961).   DOI
7 W. Dietrich and W. E. Proebster, J.Appl. Phys., 31, S281 (1960).   DOI
8 T. C. Edwards and M. B. Steer, Foundations of interconnect and microstrip design, John Wiley & Son, New York (2000) pp. 161~224.
9 J. H. E. Griffiths, Nature, 158, 670 (1946).   DOI
10 J. C. Sohn, M. Yamaguchi, S. H Lim, and S. H. Han, J. Magnetics., 10(4), 163 (2005).   DOI   ScienceOn
11 S. Yoshida, H. Ono, S. Ohnuma, M. Yamaguchi, and Y. Shimada, Material Japan, 42, 193 (2003).   DOI
12 Y. C. Chen, D. S. Hung, Y. D. Yao, S. F. Lee, H. P. Ji, and C. Yu, J. Appl. Phys., 101, 09C104 (2007).   DOI
13 J. A. Osborn, Phys. Rev., 67(11), 351 (1945).   DOI
14 G. Counil, J.-V. Kim, T. Devolder, C. Chappert, K. Shigeto, and Y. Otani, J. Appl. Phys., 95, 5646 (2004).   DOI   ScienceOn