• Title/Summary/Keyword: experimental dynamics

Search Result 1,820, Processing Time 0.03 seconds

A Study on the Efficient Optimization of Suspension Characteristics for Dynamic Behavior of the High Speed Train (고속전철의 동적특성에 따른 효율적인 현가장치 최적화 방안 연구)

  • Park, Chan-Kyoung;Kim, Young-Guk;Hyun, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.501-506
    • /
    • 2001
  • Computer modeling is essential to evaluate possible design of suspension for a railway vehicles. By creating a simulation, the engineers are able to assess the feasibility of a given design and change the design factors to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have turned to surrogate modeling. A surrogate model is essentially a regression performed on a data sampling of the simulation. In the most general sense, metamodels(surrogate model) take the form $y(x)=f(x)+{\varepsilon}$, where y(x) is the true simulation output, f(x) is the metamodel output, and $\varepsilon$ is the error between the two. In this paper, a second order polynomial equation is partially used as a metamodel to represent the forty-six dynamic performances for high speed train. The number of factors as design variables of the metamodel is twenty-nine, which are composed the dynamic characteristics of suspension. This metamodel is used to search the optimum values of suspension characteristics which minimize the dynamic responses for high speed train. This optimization is a multi-objective problem which have many design variables. This paper shows that the response surface model which is made through the design of analysis of computer experiments method is very efficient to solve this complex optimization problem.

  • PDF

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

Prediction of Dynamics of Bellows in Exhaust System of Vehicle Using Equivalent Beam Modeling (등가 보 모델링 방법을 이용한 차량 배기계의 벨로우즈 동특성 예측)

  • Hong, Jin Ho;Kim, Yong Dae;Lee, Nam Young;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1105-1111
    • /
    • 2015
  • The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-Gy;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Internal Flow Characteristics of Simulated Dual Pulse Rocket Motor by Using the Hot Gas and Cold Gas (Hot Gas와 Cold Gas를 이용한 모사 이중펄스 로켓 추진기관의 내부 유동 특성)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Dual pulse rocket motor is a variant of solid rocket motor with two propellant grain separated by a pulse separation device. The major performance of such a rocket motor is influenced by the change in the hole area of pulse separation device to nozzle throat area ratio. In this study, we performed flow analysis to investigate the internal flow characteristics according to the pulse separation device hole area to nozzle throat area ratio change. Gases used flow analysis were used combustion gas of HTPB/AP composite propellant and nitrogen gas. Flow analysis results of the dual pulse rocket motor were validated by comparison with experimental results of pneumatics. Commercial CFD code ANSYS FLUENT 14.5 is used in this study to simulate flow analysis.

Design of Control Method for ON/OFF Type Actuation System Considering Actuation Limit (구동한계를 고려한 ON/OFF 형식 구동시스템의 구동위치 제어기법 설계)

  • Park, Jungwoo;Park, Iksoo;Park, Dongchang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2015
  • In this paper, it is accomplished to design a control method for such an actuation system of simplified ON/OFF mechanism with actuation command limit. First of all, based on experimental data, the modeling works for nonlinear/linear actuation dynamics are performed, which are govern by PWM command as a control input. Using the linearized model, a classical PI control method is designed to satisfy the aimed control performance requirements, and a control algorithm is proposed to realize the required control performance in the effective control region through resolving the issue for the PWM command limit which reduces the control performance. Finally, through control simulations, the design method is verified and the corresponding control performance improvement is evaluated.

Mathematical Modeling and Simulation for Steady State of a 75-ton Liquid Propellant Rocket Engine (75톤급 액체로켓엔진 정상상태 과정의 수학적 모델링 및 시뮬레이션)

  • Lee, Kyelim;Cha, Jihyoung;Ko, Sangho;Park, Soon-Young;Jung, Eunhwan
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.6-12
    • /
    • 2017
  • This paper deals with mathematical modeling of a 75-ton open-cycle Liquid Propellant Rocket Engine (LPRE) and the steady state simulation based on a nominal operating point. Each component of open-cycle LPRE may be classified into seven major categories using thermodynamics and dynamics characteristics. To simplify the simulation model of LPRE in this paper, we used four govern equations with assuming no heat transfer process. We confirmed the mathematical model of LPRE by using the error ratio and comparing the experiment data and simulation data in steady state, and checked the stability with the linearized model. Finally, we demonstrated the simulation model as compared to the transient response of experimental data.

Sensemaking and Human Judgment Under Dynamic Environment (급변하는 환경에서의 인간의 의사결정과 상황파악)

  • Seong, Youn-Ho;Park, Eui-H.;Lee, Hwa‐Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.49-60
    • /
    • 2006
  • Technological encroachment provides human operators with flood of information that must be analyzed to understand the environment and make judgments that lead to strategic actions. Further, the environment is not static and therefore uncertain, changing its aspect dynamically. Complexity accompanied with its dynamics imposes substantial difficulty to human operators' task. Criticality of having situational understanding becomes more important than ever. Situationalunderstanding requires the human operators possessing tacit knowledge in order for them to make the sense out of the situation while interacting with information from many heterogeneous sources, the notion of sensemaking. Sensemaking refers to the process of developing mental framework to assemble pieces of information representing different aspects of the environment that can be used to develop one's own actionable knowledge to implement their judgments in the uncertain environment. Therefore, judgment process and performance is a key component of sensemaking process. Among many judgment and decision making models, the lens model with its extension can be utilized to partially describe the judgmental aspect of sensemaking. One of the lens model parameters, unmodeled knowledge, can be a corresponding quantitative measure for the tacit knowledge that plays an important role in sensemaking. In this paper, a comprehensive literature for sensemaking is provided to formally define the notion of sensemaking in the military domain. Also, it is proposed that there is a crucial link between the sensemaking and human judgment process and performance from the lens model perspective. Potential implications for experimental framework are also proposed.

A Study on Collecting Electrode Design for Developing Electrostatic Precipitator(ESP) of Urban Railway Underground Tunnels (도시철도 지하터널용 전기집진기 개발을 위한 집진극 형상에 대한 기초연구)

  • Koo, Tae Yong;Kim, Yong Min;Hong, Jung Hee;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this study, the characteristics of turbulent flow and collection efficiency for an one-stage electrostatic precipitator(ESP) with slit type collecting electrode for urban railway underground tunnels were obtained using computational fluid dynamics(CFD) commercial code FLUENT 6.3 and lab-scale experiments. The electrostatic precipitator was operated under high gas velocity(3~12m/s). Five different designs of collecting electrode, flat plate-type and a slit-type of 3mm, 5mm, 7mm and 10mm slit width and four various gas velocity(3, 6, 9, and 12m/s) were used and applied. A standard k-${\varepsilon}$ model in CFD commercial code FLUENT 6.3 was used for flow simulation. The flow simulation results showed that the turbulent intensity of flat plate-type was higher than slit-type under all gas velocity conditions and also the turbulent intensity of flat plate-type was increased continuously, but in case of slit-type was maintained at constant range. And, the turbulent intensity was decreased according to increasing of slit width. The experimental results showed that the collection efficiency of slit-type was higher than flat plate-type under all gas velocity conditions. And, over 6m/s gas velocity condition, the collection efficiency of 5mm and 7mm was highest, when compared to 3mm and 10mm.