• Title/Summary/Keyword: experimental and numerical approaches

Search Result 195, Processing Time 0.03 seconds

Numerical Methods in Propulsion System Design

  • Buchars'kyy, Valeriy
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.238-238
    • /
    • 2012
  • Report is devoted to place and role of numerical simulation in design of rocket propulsion systems. In introduction advanced solutions in liquid propellant rocket engines design are presented. Further essence of design process described briefly. The central place of method of solution of direct problem in design process was shown. Numerical simulation for solving direct problem of fluid dynamic was used as the alternative to theoretical and experimental approaches. Main features of numerical models of processes in propulsion systems were observed. Some results of simulation and (or) design of different types of chemical propulsion system were presented also. The combined rocket engine, rocket engine with injection of after-turbine gas into supersonic part of the nozzle, solid propellant engine and hybrid propulsion engine are under consideration.

  • PDF

Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Flow Characteristics (에어컨 실외기용 축류홴의 성능에 관한 연구: 유동 특성)

  • Kim, Yong-Hwan;Jeong, Jin-Hwan;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.30-35
    • /
    • 2010
  • The aerodynamic performance of axial flow fans for outdoor unit of air-conditioner is investigated by numerical and experimental approaches in this study. The pressure drop and volumetric flow rate are compared each other in several different conditions and fan speeds. It is shown that the predicted fan performances are quite well matched with the experimental results. It is also shown that the curvature of the fan arc and hub height have significant influences on the flow distribution after hub. By the results of this study, it can be suggested that several ways to improve the aerodynamic performance of the axial flow fan can be found using the numerical analysis.

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity (Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구)

  • Cha, Chun-Loon;Lee, Ho-Yeon;Hwang, Sang-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

Optimization of the Hydro-Forming Process for Aluminum Bumper Beams by Using Finite Element Analysis (유한요소법을 이용한 하이드로포밍 알루미늄 범퍼빔의 성형공정 최적화)

  • Son, Wonsik;Yum, Sanghyuk;Lee, Jihoon;Kim, Seungmo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.410-417
    • /
    • 2017
  • Hydro-forming is being employed increasingly to realize lightweight vehicular parts. The bumper beam produced by this process weighs 30% less than the conventional products with equal stiffness. However, hydro-forming involves complex parameters to obtain the target geometry and low residual stress. Parametric studies are conducted using finite element analysis to obtain optimized process conditions. Through these numerical approaches, the internal and holding pressures and feeder forward stroke along the extruded direction are optimized to achieve low residual stress and to minimize springback. The numerical results are verified by experimental observations made by employing a three-dimensional laser scanner. The numerical and experimental results are compared in terms of the springback. Both results show similar tendencies.

Study on Flow Velocity Control of a Multiple Hydrofoil Duct via Flow Visualization Techniques (유동가시화를 통한 다중 수중익 덕트 내 유속조절에 대한 연구)

  • Kim, Jihoon;Sitorus, Patar Ebenezer;Won, Boreum;Le, Tuyen Quang;Ko, Jin Hwan
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.12-17
    • /
    • 2016
  • In this work, we investigate the flow velocity controllability of a diffuser-type multiple hydrofoil duct by experimental and numerical flow visualization approaches. The flow velocity controllability is analyzed by changing the angle of the hydrofoil near the outlet, which is the diffuser, while the incoming flow velocity is 0.6 m/s in the experiment. When the diffuser angle is changed from 0 to 7.5 degree, the maximum velocity inside the duct is varied from 1.35 m/s to 1.52 m/s. Also, it is shown from the numerical analysis that the maximum velocity is varied from 1.09 m/s to 1.17 m/s in the same condition. Thus, the aspect of the acceleration in the duct due to the increase of the diffuser angle is similar between the both approaches. Therefore, the multiple hydrofoil duct can be used to control the flow speed inside the duct for continuously extracting power close to a rated capacity.

Robust Control for Networked Control Systems with Admissible Parameter Uncertainties

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This paper discusses Robust $H{\infty}$ control problems for networked control systems (NCSs) with time delays and subject to norm-bounded parameter uncertainties. Based on a new discrete-time model, two approaches of robust controller design are proposed. A numerical example and experimental verification with an NCS test bed are given to illustrate the feasibility and effectiveness of proposed design methodologies.