• 제목/요약/키워드: experimental and numerical approaches

검색결과 198건 처리시간 0.022초

유연식 라이저에 대한 유한요소법과 이론적 방법에 의한 구조 거동의 비교 연구 (A Comparison Study of Structure Behavior of Flexible Riser Using Numerical and Theoretical Methods)

  • 임기호;장범선;유동현
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.258-265
    • /
    • 2016
  • A flexible riser consists of several layers which have different materials, shapes and functions. The layers designed properly can take the design load safely, and each property of layer provides a complexity of flexible riser. Such complexity/unit-property is an input for global analysis of flexible riser. There are several approaches to calculate the complexity of flexible riser, those are experimental, numerical and theoretical methods. This paper provides a complexity from numerical and theoretical analysis for 2.5 inch flexible riser of which details and the experimental data are already produced under tension, external pressure, and bending moment. In addition, comparison of stiffness and stress are also provided. Especially, analysis of stress could lead to researches on ultimate strength or fatigue strength of flexible risers.

구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향 (The Effect of Structural Models(Membrane or Plate) on the Modal Model Method)

  • 김시문;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

Numerical Methods in Propulsion System Design

  • Buchars'kyy, Valeriy
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.238-238
    • /
    • 2012
  • Report is devoted to place and role of numerical simulation in design of rocket propulsion systems. In introduction advanced solutions in liquid propellant rocket engines design are presented. Further essence of design process described briefly. The central place of method of solution of direct problem in design process was shown. Numerical simulation for solving direct problem of fluid dynamic was used as the alternative to theoretical and experimental approaches. Main features of numerical models of processes in propulsion systems were observed. Some results of simulation and (or) design of different types of chemical propulsion system were presented also. The combined rocket engine, rocket engine with injection of after-turbine gas into supersonic part of the nozzle, solid propellant engine and hybrid propulsion engine are under consideration.

  • PDF

에어컨 실외기용 축류홴의 성능에 관한 연구: 유동 특성 (Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Flow Characteristics)

  • 김용환;정진환;이장호
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.30-35
    • /
    • 2010
  • The aerodynamic performance of axial flow fans for outdoor unit of air-conditioner is investigated by numerical and experimental approaches in this study. The pressure drop and volumetric flow rate are compared each other in several different conditions and fan speeds. It is shown that the predicted fan performances are quite well matched with the experimental results. It is also shown that the curvature of the fan arc and hub height have significant influences on the flow distribution after hub. By the results of this study, it can be suggested that several ways to improve the aerodynamic performance of the axial flow fan can be found using the numerical analysis.

자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구 (A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE)

  • 윤익로;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity)

  • 차천륜;이호연;황상순
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

유한요소법을 이용한 하이드로포밍 알루미늄 범퍼빔의 성형공정 최적화 (Optimization of the Hydro-Forming Process for Aluminum Bumper Beams by Using Finite Element Analysis)

  • 손원식;염상혁;이지훈;김승모
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.410-417
    • /
    • 2017
  • Hydro-forming is being employed increasingly to realize lightweight vehicular parts. The bumper beam produced by this process weighs 30% less than the conventional products with equal stiffness. However, hydro-forming involves complex parameters to obtain the target geometry and low residual stress. Parametric studies are conducted using finite element analysis to obtain optimized process conditions. Through these numerical approaches, the internal and holding pressures and feeder forward stroke along the extruded direction are optimized to achieve low residual stress and to minimize springback. The numerical results are verified by experimental observations made by employing a three-dimensional laser scanner. The numerical and experimental results are compared in terms of the springback. Both results show similar tendencies.