• Title/Summary/Keyword: experimental allowable strength

Search Result 53, Processing Time 0.023 seconds

Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports (재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석)

  • Park, Jin-Suk;Ko, Sang Seom;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

An Experimental Study on Connection Strength between Tie-bar and Facing block composing Reinforced Earth (보강토옹벽을 구성하는 타이바와 전면블록의 연결강도에 관한 실험연구)

  • Lee Seung-Hyun;Kim Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.404-408
    • /
    • 2006
  • In this paper, connection strength between facing block and tie-bar was investigated through experimental study with varying in-fill material such as concrete, soil and crushed stone. Also, connection strength between anchor block and tie-bar was investigated with varying in-fill material. According to the experimental results, in case of using in-fill concrete, connection strength between facing block and tie-bar was larger than allowable tension load of tie-bar. Whereas in case of using in-fill soil or crushed stone, connection strength between facing block and tie-bar was less or similiar to allowable tension load of tie-bar. Connection strength between anchor block and tie-bar for which crushed stone was used as in-fill material, was larger than allowable tension load of tie-bar.

  • PDF

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

An Experimental Study on Allowable Compressive Stress at Prestress Transfer in Pre-Tensioned Concrete Members (프리텐션된 콘크리트 부재의 프리스트레스 도입시 허용압축응력에 관한 실험적 연구)

  • Lee, Jeong Yeon;Lee, Deuck Hang;Kim, Kang Su;Park, Min Kook;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In the previous research, allowable compressive stress was analyzed based on strength theory, in which primary effect factors on the allowable compressive stress, such as eccentricity ratio, section type, section size, prestress and self-weight moment, were considered. As its results, allowable compressive stress equations were proposed. As a series of the previous research, this paper presents an experimental study on the prestress at transfer of pre-tensioned members with different eccentricity ratios. The results shows that ACI318-08 and EC2-02 are unconservative for the members under low eccentricity ratios, and they are conservative for the members under high eccentricity ratios. Compared to the code provisions, the results indicates that the proposed equation reasonably well evaluates the allowable compressive stresses for those with different eccentricity ratios.

Crack-controlled design methods of RC beams for ensuring serviceability and reparability

  • Chiu, Chien-Kuo;Saputra, Jodie;Putra, Muhammad Dachreza Tri Kurnia
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • For the design of flexural and shear crack control for reinforced concrete (RC) beams related to serviceability and reparability ensuring, eight simply-supported normal-strength reinforced concrete (NSRC) beam specimens are tested and the existing high-strength reinforced concrete (HSRC) experimental data are included in the investigation of this work. According to the investigation results of flexural and shear cracks, this works modifies the existing design formulas to determine the spacing of the tensile reinforcement for the flexural crack control of a HSRC/NSRC beam design. Additionally, for a specified shear crack width of 0.4 mm, the allowable stresses of the shear reinforcement are also identified. For the serviceability and reparability ensuring of HSRC/NSRC beams, this works proposes the relationship curves between the maximum flexural width and allowable stress of the tensile reinforcement, and the relationship curves between the shear crack width and allowable shear force that can be used to do the crack width control directly.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

An Experimental Study on Allowable Size of Incomplete Penetration in Butt Joint Bridge Weld Considering Fatigue Strength (교량의 피로강도를 고려한 맞대기용접부 불안전용입 한계결함 결정에 관한 연구)

  • 백영남;장영권
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.68-75
    • /
    • 2000
  • The incomplete penetration(IP) discontinuity in butt joint weld, which is detected during safety analysis of the steel bridge by nondestructive evaluation(NDE) method, is classified as unacceptable defect according to the NDE codes and standards. In fact, there are a little allowance in butt joint weld in the view point of design criterion, and also detected IP discontinuity should be classified and evaluated for the fatigue strength and residual life estimation. In this study, we performed fatigue test to evaluate the fatigue strength of high strength steel(SWS490A) containing IP discontinuities in various size, the results compared and classified according to the bridge construction standard specification which published by korea administration of construction and traffic. Experimental results could be used to evaluate and estimate the IP discontinuities considering different stress range in butt joint bridge weld during periodic safety inspection.

  • PDF

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

A Comparison of Design Strength Equations between Steel and Fiber Reinforced Polymer Composites Columns (철골 및 섬유보강 폴리머(FRP) 복합 기둥의 설계강도식에 관한 비교 연구)

  • Choi, Yeol;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.85-93
    • /
    • 2003
  • Steel, concrete and their combination materials are the most 6commonly used materials for civil engineering structural systems such as buildings, bridge structures and other structures. Recently, however, fiber reinforced polymer (FRP) composites, a relatively new composite material made of fibers and polymer resins, have been gradually used in structural systems as an alternative structural material. This paper describes a comparison of design strength equations for steel column and FRP composite column based on design philosophies. The safety factors used in allowable stress design (ASD) are relatively higher in FRP structural design than steel structural design. Column critical stress equations of FRP composites column from an experimental study can be represented by Euler elastic buckling equation at the long-range of slenderness, and an exponential form at the short-range of slenderness as defined in Load and Resistance Factor Design (LRFD) of steel column. The column strength of steel and FRP composite columns in large slenderness is independent of material strength, this result verified the elastic buckling equation as derived by Eq. (15) and Eq. (5).

  • PDF

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.