• Title/Summary/Keyword: experimental aeroelasticity

Search Result 8, Processing Time 0.025 seconds

A parametric study of indicial function models in bridge deck aeroelasticity

  • Borri, C.;Costa, C.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.405-420
    • /
    • 2004
  • In common approaches, bridge dynamics under wind action is analyzed by modeling the interaction between fluid and structure by means of transient wind loads acting over the structure itself. Amid various possible manners to describe such types of loads, a representation based on families of 'indicial functions' is adopted here. The aim is to investigate its flexibility to capture the main features of wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of dynamic derivatives and for various types of indicial functions. It is shown how parameter variations influence phase portraits.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

Design and testing of a low subsonic wind tunnel gust generator

  • Lancelot, Paul M.G.J.;Sodja, Jurij;Werter, Noud P.M.;Breuker, Roeland De
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.125-144
    • /
    • 2017
  • This paper summarises the design of a gust generator and the comparison between high fidelity numerical results and experimental results. The gust generator has been designed for a low subsonic wind tunnel in order to perform gust response experiments on wings and assess load alleviation. Special attention has been given to the different design parameters that influence the shape of the gust velocity profile by means of CFD simulations. Design parameters include frequency of actuation, flow speed, maximum deflection, chord length and gust vane spacing. The numerical results are compared to experimental results obtained using a hot-wire anemometer and flow visualisation by means of a tuft and smoke. The first assessment of the performance of the gust generator showed proper operation of the gust generator across the entire range of interest.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Planform Curvature Effects on the Stability of Coupled Flow/Structure Vibration (면내 곡률이 천음속 및 초음속 유체/구조 연계 진동 안정성에 미치는 영향)

  • Kim, Jong-Yun;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.864-872
    • /
    • 2002
  • In this study, the effect of planform curvature on the stability of coupled flow/structure vibration is examined in transonic and supersonic flow regions. The aeroelastic analysis for the frequency and time domain is performed to obtain the flutter solution. The doublet lattice method(DLM) in subsonic flow is used to calculate unsteady aerodynamics in the frequency domain. For all speed range, the time domain nonlinear unsteady transonic small disturbance code has been incorporated into the coupled-time integration aeroelastic analysis (CTIA). Two curved wings with experimental data have been considered in this paper MSC/NASTRAN is used for natural free vibration analyses of wing models. Predicted flutter dynamic pressures and frequencies are compared with experimental data in subsonic and transonic flow regions.

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.

Aeroelastic tailoring using crenellated skins-modelling and experiment

  • Francois, Guillaume;Cooper, Jonathan E.;Weaver, Paul M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.93-124
    • /
    • 2017
  • Aeroelastic performance controls wing shape in flight and its behaviour under manoeuvre and gust loads. Controlling the wing‟s aeroelastic performance can therefore offer weight and fuel savings. In this paper, the rib orientation and the crenellated skin concept are used to control wing deformation under aerodynamic load. The impact of varying the rib/crenellation orientation, the crenellation width and thickness on the tip twist, tip displacement, natural frequencies, flutter speed and gust response are investigated. Various wind-off and wind-on loads are considered through Finite Element modelling and experiments, using wings manufactured through polyamide laser sintering. It is shown that it is possible to influence the aeroelastic behaviour using the rib and crenellation orientation, e.g., flutter speed increased by up to 14.2% and gust loads alleviated by up to 6.4%. A reasonable comparison between numerical and experimental results was found.

A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems (이동경계문제의 전산유체역학을 위한 체적격자변형코드)

  • Ko, Jin-Hwan;Kim, Jee-Woong;Byun, Do-Young;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1049-1055
    • /
    • 2008
  • Modern multidisciplinary computational fluid dynamics often incorporates moving boundaries, as would be required in the applications such as design optimization, aeroelasticity, or forced boundary motion. It is challenging to develop robust, efficient grid deformation algorithms when large displacement of the moving boundaries is required. In this paper, a volume grid deformation code is developed based on the finite macro-element and the transfinite Interpolation, and then interfaces to a structured multi-block Navier-Stokes in-house code. As demonstrated by an airfoil with pitching motion, the hysteresis loops of lift, drag and moment coefficients of the developed method are shown to be in good agreement with those of experimental data.