• Title/Summary/Keyword: experiment conditions

Search Result 5,413, Processing Time 0.035 seconds

Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment (수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가)

  • Lee, Uk-Jae;Choi, Hyuk-Jin;Ko, Dong-Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, the two horizontal shroud tidal current energy converter, which can generate power even under low flow speed conditions, was developed. In order to determine the shape of the shroud system, a three-dimensional numerical simulation test was conducted, and a 1/6 scale down model was made to perform a hydraulic model experiment. The hydraulic model experiment was performed under four flow conditions, and the flow speed, torque, and RPM were measured for each experimental case. As a result of the numerical simulation test, it was found that the flow speeds passing through the nozzle were increased by about 2~3 times in the cylinder, and when the extension ratio was 2:1, the highest flow speed was shown. In addition, it was found that the flow speeds increased 2.8 times when the diameter ratio between the nozzle and the cylinder was 1.5:1. Meanwhile, as a result of the hydraulic model experiment, it was found that when the tip speed ratio was between 1.75 and 2, the power coefficient was 0.32 to 0.34.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Optimum Conditions for Production of Fermented Grapefruit Extract using Leuconostoc mesenteroides KCTC3505 (Leuconostoc mesenteroides KCTC3505를 이용한 발효자몽 추출물 생산 조건의 최적화)

  • Hong, Kyung-Pyo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2011
  • This study was conducted in order to determine the optimum conditions for the production of fermented grapefruit extract showing high cell growth, antioxidant activity and total flavonoid content. Five lactic acid bacterial strains - Lactobacillus plantarum KCTC3104, Lactobacillus brevis KCTC3102, Weisella cibaria KCTC3746, Leuconostoc citreum KCTC3526 and Leuconostoc mesenteroides KCTC3505 - were evaluated first in order to determine the optimum strain able to grow with high efficiency on grapefruit as a substrate and possesses higher antioxidant activity and flavonoids content. Among these strains, L. mesenteroides KCTC3505 was selected as a starter culture. To estimate the available or effective content of grapefruit in basal medium, the effects of 30%, 50%, and 70% grapefruit contents on the performance of fermentation were tested, and it was found that grapefruit can be added at 70% levels to medium. In this study, three factors of fermentation conditions - incubation time, sucrose, and glucose contents - were evaluated for their effects on fermentation performance. Taguchi experiment design was employed and the responses of experiments were calculated using signal and noise ratio calculation with larger-the-best characteristics. Finally, the optimum conditions for the manufacture of fermented grapefruit extract were as follows: grapefruit 70%, sucrose 10 g/L, glucose 10 g/L, sodium acetate 1 g/L, NaCl 1 g/L, dipotassium phosphate 0.1 g/L, magnesium sulfate 0.01 g/L and 16 hr of incubation.

Optimization of Fermentation Conditions for the Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae using Response Surface Methodolgy (단수수 착즙액으로부터 에탄올 생산을 위한 반응표면분석법을 이용한 효모 발효조건 최적화)

  • Cha, Young-Lok;Park, Yu-Ri;Kim, Jung-Kon;Choi, Yong-Hwan;Moon, Youn-Ho;Bark, Surn-Teh;An, Gi-Hong;Koo, Bon-Cheol;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • Optimization of initial total sugar concentration of sweet sorghum juice, aeration time and aeration rate on ethanol production was performed by response surface methodology (RSM). The optimum conditions for ethanol production from concentrated sweet sorghum juice were determined as follows: initial total sugar concentration, 21.2 Brix; aeration time, 7.66h; aeration rate, 1.22 vvm. At the optimum conditions, the maximum ethanol yield was predicted to be 91.65% by model prediction. Similarly, 92.98% of ethanol yield was obtained by verification experiment using optimum conditions after 48 h of fermentation. This result was in agreement with the model prediction.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

Effect of Bath Compositions and Plating Conditions for Decorative Properties of Chromium Deposits using Oxalic Acid (수산을 사용한 크롬도금의 광택성에 미치는 도금액의 조성과 도금조건의 영향)

  • Oh, I.S.;Park, J.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.80-87
    • /
    • 2001
  • Decorative properties of chromium depositions from oxalic acid bath containing chromium oxide and ammonium sulfate have been examined over a wide range of bath compositions and plating conditions. The obtained results from this experiment are summarized as follow: The followings were determined as a optimum conditions, bath compositions; $CrO_3\;200{\sim}250\;g/{\ell},\;H_2C_2O_4{\cdot}2H_2O\;500{\sim}700\;g/{\ell},\;(NH_4)_2SO_4\;40{\sim}120\;g/{\ell}$, and operation conditions; pH $2.0{\sim}2.5$, current density $15{\sim}250\;A/dm^2$ at bath temperature range of $30{\sim}80^{\circ}C$. Bright chromium deposits were obtained over a wide range of ammonium sulfate concentration and bath temperature. Decorative property for chromium deposition was adopted to apply stoichiometric ratio of $CrO_3$ concentration and $H_2C_2O_4{\cdot}2H_2O$.

  • PDF

Forming of Circular Protrusion by Half-Piercing and its Application to Marking of Sheet Metal (하프피어싱에 의한 원형돌기의 성형 및 마킹공정에의 응용)

  • Jung, H.K.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.202-206
    • /
    • 2012
  • Marking is a process that engraves letters or a pattern onto the surface of sheet metal. During marking, it is important to set the proper working conditions for clarity of the letters. In this study a simple case for forming circular protrusions by half-piercing and embossing was initially attempted to determine the working conditions which gave good results with respect to shape accuracy. Corner-radius and flatness of circular protrusions made under several experimental conditions were measured and compared. It is shown that the precision of protrusions by half-piercing is superior to that of embossing, and the clearance between punch and die exerts a strong influence on the shape accuracy rather than the penetration percentage into the thickness of the sheet metal. The marking dies for "SNUT" letters, as an example, by applying the above results were manufactured with four different clearances. The working variables for the experiment were clearance and marking depth. For the very shallow depth of 0.1mm the letters were not clearly read. Letters marked under other conditions were easily distinguished with increasing marking depth. It was confirmed that the half-piercing technique with proper values of the working variables gives good quality for the marking of sheet metal.

Optimization of Printing Conditions Using Design Experiments for Minimization of Resistances of Electrodes in Roll-to-roll Gravure Printing Process (롤투롤 그라비어 방식의 인쇄 전극 저항 최소화를 위한 실험계획법 적용 인쇄 공정 조건 최적화)

  • Lee, Sang Yoon;Kim, Cheol;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.351-356
    • /
    • 2017
  • The resistance of printed patterns for electrodes fabricated using printing technology should be minimized. This parameter depends on the pattern width and thickness; however, from the viewpoint of printability, the printed patterns should be printed at the designed width. The resistance of the printed patterns as well as printability is affected by various printing conditions. In this paper, the printing condition is optimized to minimize the resistance of electrodes printed by the roll-to-roll gravure method. This is done by considering the spread ratio of pattern width as a parameter of printability using design experiments. The drying temperature, dryer fan speed, and printing speed are selected as effective factors for the experiment objective. The optimized conditions are obtained and reproducibility test using these demonstrates that the optimized conditions can produce low-resistance electrodes for printability of the pattern width.

Effects of Aerobic and Non-Aerobic Starvation on SBR Performance When Treating Saline Wastewater

  • Moon, Byung-Hyun;Park, Kyung-Hun;Kim, Sang-Soo;Yoon, Cho-Hee
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.139-144
    • /
    • 2012
  • In this study, the effects of starvation on floc characteristics when treating saline wastewater using a sequencing batch reactor (SBR) were investigated. The effectiveness over 5 days of starvation for aerobic and non-aerobic strategies for maintaining the physical characteristics of floc-forming sludge and the recovery period needed to regain the initial pollutant removal efficiency were investigated. Experiment results revealed that the sludge volume index (SVI) increased and the floc size and fractal dimension decreased after starvation under both aerobic and non-aerobic conditions. Sludge settleability deteriorated faster under aerobic conditions compared to non-aerobic conditions. Under non-aerobic conditions, the SBR required less time to return to its initial pollutant removal efficiency and settleability. Floc size, fractal dimension, and SVI were observed to be fairly correlated with each other. The results demonstrated that it was better to maintain the sludge under non-aerobic rather than aerobic starvation, because it adapted to, resisted starvation and had a quicker re-start afterward.

Effects of controlled environmental changes on the mineralization of soil organic matter

  • Choi, In-Young;Nguyen, Hang Vo-Minh;Choi, Jung Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2017
  • This study investigated how the combined changes in environmental conditions and nitrogen (N) deposition influence the mineralization processes and carbon (C) dynamics of wetland soil. For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in environmental conditions and N deposition on the anaerobic decomposition of organic carbon and the emission of greenhouse gases from wetland soil. A chamber with elevated $CO_2$ and temperature showed almost twice the reduction of total decomposition rate compared to the chamber with ambient atmospheric conditions. In addition, $CO_2$ fluxes decreased during the incubation under the conditions of ambient $CO_2$ and temperature. The decrease in anaerobic microbial metabolism resulted from the presence of vegetation, which influences the litter quality of soils. This can be supported by the increase in C/N ratio over the experimental duration. Principle component analysis results demonstrated the opposite locations of loadings for the cases at the initial time and after three months of incubation, which indicates a reduction in the decomposition rate and an increasing C/N ratio during the incubation. From the distribution between the decomposition rate and gas fluxes, we concluded that anaerobic decomposition rates do not have a significantly positive relationship with the fluxes of greenhouse gas emissions from the soil.