• 제목/요약/키워드: experience-based learning algorithm

검색결과 64건 처리시간 0.029초

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.

Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류 (Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning)

  • 김태수;김영우;김근형;김철민;전형석;석현정
    • 감성과학
    • /
    • 제24권1호
    • /
    • pp.91-104
    • /
    • 2021
  • 본 연구에서는 승용차에서 사람들이 기기를 사용하기 위해 사용하는 기동어인 "Hi, KIA!"의 감성을 기계학습을 기반으로 분류가 가능한가에 대해 탐색하였다. 감성 분류를 위해 신남, 화남, 절망, 보통 총 4가지 감정별로 3가지 시나리오를 작성하여, 자동차 운전 상황에서 발생할 수 있는 12가지의 사용자 감정 시나리오를 제작하였다. 시각화 자료를 기반으로 총 9명의 대학생을 대상으로 녹음을 진행하였다. 수집된 녹음 파일의 전체 문장에서 기동어 부분만 별도로 추출하는 과정을 거쳐, 전체 문장 파일, 기동어 파일 총 두 개의 데이터 세트로 정리되었다. 음성 분석에서는 음향 특성을 추출하고 추출된 데이터를 svmRadial 방법을 이용하여 기계 학습 기반의 알고리즘을 제작해, 제작된 알고리즘의 감정 예측 정확성 및 가능성을 파악하였다. 9명의 참여자와 4개의 감정 카테고리를 통틀어 기동어의 정확성(60.19%: 22~81%)과 전체 문장의 정확성(41.51%)을 비교했다. 또한, 참여자 개별로 정확도와 민감도를 확인하였을 때, 성능을 보임을 확인하였으며, 각 사용자 별 기계 학습을 위해 선정된 피쳐들이 유사함을 확인하였다. 본 연구는 기동어만으로도 사용자의 감정 추출과 보이스 인터페이스 개발 시 기동어 감정 파악 기술이 잠재적으로 적용 가능한데 대한 실험적 증거를 제공할 수 있을 것으로 기대한다.

조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발 (Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding)

  • 이경호;연윤석;양영순
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

Personalized Size Recommender System for Online Apparel Shopping: A Collaborative Filtering Approach

  • Dongwon Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.39-48
    • /
    • 2023
  • 본 연구는 의류의 디자인 간 치수의 불일치와 비표준화로 인해 온라인 구매 시 발생하는 치수 선택의 오류 문제를 해결할 수 있는 방안을 제시하기 위해 수행되었다. 본 논문은 구매자에게 개인화된 치수를 제시할 수 있는 기계 학습 기반 추천 시스템의 구현 방안을 다루고 있다. 온라인 상거래로부터 발생된 구매 데이터를 사용하여 비음수 행렬 분해(NMF), 특이값 행렬 분해(SVD), k-최근접 이웃(KNN), 공동 클러스터링(Co-Clustering) 등 여러 검증된 협업 필터링 알고리즘을 훈련하였고, 이들 간에 성능을 비교하였다. 연구 결과, 비음수 행렬 분해 (NMF) 알고리즘이 다른 알고리즘들보다 뛰어난 성능을 보임을 확인할 수 있었다. 동일한 계정을 사용하는 여러 구매자가 포함되는 구매 데이터의 특성에도 불구하고, 제안 모형은 충분한 정확도를 보였다. 본 연구의 결과는 치수 선택의 오류로 인한 반품률을 감소하고 전자상거래 플랫폼에서의 고객 경험을 향상시키는 데 기여할 것으로 기대된다.

Life prediction of IGBT module for nuclear power plant rod position indicating and rod control system based on SDAE-LSTM

  • Zhi Chen;Miaoxin Dai;Jie Liu;Wei Jiang;Yuan Min
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3740-3749
    • /
    • 2024
  • To reduce the losses caused by aging failure of insulation gate bipolar transistor (IGBT), which is the core components of nuclear power plant rod position indicating and rod control (RPC) system. It is necessary to conduct studies on its life prediction. The selection of IGBT failure characteristic parameters in existing research relies heavily on failure principles and expert experience. Moreover, the analysis and learning of time-domain degradation data have not been fully conducted, resulting in low prediction efficiency as the monotonicity, time correlation, and poor anti-interference ability of extracted degradation features. This paper utilizes the advantages of the stacked denoising autoencoder(SDAE) network in adaptive feature extraction and denoising capabilities to perform adaptive feature extraction on IGBT time-domain degradation data; establishes a long-short-term memory (LSTM) prediction model, and optimizes the learning rate, number of nodes in the hidden layer, and number of hidden layers using the Gray Wolf Optimization (GWO) algorithm; conducts verification experiments on the IGBT accelerated aging dataset provided by NASA PCoE Research Center, and selects performance evaluation indicators to compare and analyze the prediction results of the SDAE-LSTM model, PSOLSTM model, and BP model. The results show that the SDAE-LSTM model can achieve more accurate and stable IGBT life prediction.

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로 (Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy)

  • 이성주;이용현;김진현;이강현;신광섭
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.201-222
    • /
    • 2023
  • 온라인 플랫폼을 통한 전자상거래 활성화에 따라 수많은 중소 판매상들은 수익성 향상을 위해 다양한 노력을 기울이고 있다. 이를 위해서는 프로모션이나 이벤트의 범위와 할인 수준, 품목 등에 대한 전략적 의사결정이 매우 중요하다. 본 연구는 중소 전자상거래 판매상들이 효과적인 프로모션 전략을 수립하기 위한 의사결정을 지원하기 위한 도구를 개발하고자 한다. 프로모션의 시행 여부를 판단하기 위해서는 프로모션에 의한 매출 증대 수준을 예측할 수 있어야 한다. 본 연구에서는 다양한 기계학습기법 중 MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, Linear Regression 모델을 통해 프로모션 시행 후의 매출변화를 예측하기 위한 모델을 개발하였다. 프로모션 데이터가 가진 복잡성과 품목의 특성이 뚜렷한 영향력을 가지는 것으로 확인되었으며, 여러 기법 중 Random Forest 모델과 MLP 모델이 가장 성능이 좋은 것으로 나타났다. 본 연구에서 개발된 방법을 통해 중소 전자상거래 판매상이 시장 변화에 능동적으로 대응하고, 데이터 기반 의사결정을 지원할 수 있을 것이다.

Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석 (An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm)

  • 김진희;황두희;이상숙
    • 디지털융복합연구
    • /
    • 제20권1호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구는 학습자 특성(성별 및 학교 급)에 따른 온라인 수업 유형 선호도를 파악하고자 하는데 그 목적이 있다. 이를 위하여 전국 17개 지역의 초·중·고등학교 학생 4,803명을 대상으로 설문조사를 실시하였다. 이후, 유효데이터인 4,524명 학생들의 성별 및 학교급을 기반한 온라인 수업 유형 선호도 패턴을 확인하기 위해 Apriori 알고리즘을 이용한 연관규칙 분석을 실시하였다. 연구결과 초등 7개, 중등 4개, 고등 5개 등 총 16개의 규칙을 도출하였으며, 학교급과 무관하게 여학생들은 메이커활동 중심 수업을, 초·중 남학생은 가상체험중심 수업을 공통적으로 선호하였다. 보다 구체적으로, 초등학교 남학생은 SW중심수업을, 여학생은 메이커활동 중심 수업을 선호하였으며, 중학생의 경우 남여 모두 가상체험중심 수업을 선호하였다. 반면 고등학생은 교과별 강의중심에 대한 선호도가 높았다. 이러한 연구결과는 학습의 주체자인 학생이 가진 온라인 수업의 요구를 설명하는 실증적 근거로서 제시될 수 있다. 또한, 본 연구는 향후 온라인 수업의 다각화를 위한 개선방향을 제시, 탐색하는 기초자료로 활용될 수 있을 것으로 기대한다. 이상의 연구결과를 바탕으로 추후 연구에서는 다양한 온라인 수업 활동 및 모델 설계, 온라인 수업을 지원하는 플랫폼 개발, 여학생의 이공계 진로동기 형성과정에 대한 심층적 분석이 계속되어야 할 것이다.

인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템 (The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system)

  • 이길재;김창주;안병렬;김문현
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.45-52
    • /
    • 2008
  • 최근 IT 서비스 발달과 함께 고장제어, 고장의 원인분석 등의 복잡한 문제에 대하여 적합한 해결책을 제시할 수 있는 효과적인 진단시스템의 필요성이 커지고 있다. 따라서 본 논문에서는 지능형 진단 시스템분야에서의 시스템의 성능을 향상시키고, 최적의 진단을 수행하고자 사례기반추론과 인공신경망을 혼합한 지능형 진단 시스템을 제안 한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야를 효율적으로 추론할 수 있다. 하지만 사례기반추론만을 이용해 추론된 사례는 증상에 대해 다수의 원인을 추론하게 된다. 이때 추론된 증상에 따른 다수의 원인은 동일한 가중치를 가져 불필요한 원인까지 진단해야 하는 문제점이 있다. 이러한 문제를 해결하고자 인공신경망의 오류역전파 학습 알고리즘을 이용하여 증상에 대한 원인들의 쌍을 학습 시킨 후 각각의 증상에 대한 원인의 가중치를 구해 제시된 증상에 대해 가장 발생 가능성이 높은 원인을 찾아내어, 보다 명확하고 신뢰성 있는 진단을 하는 데 그 목적이 있다.