• Title/Summary/Keyword: expected return model

Search Result 121, Processing Time 0.035 seconds

A Study on the Decision-Making of Private Banker's in Recommending Hedge Fund among Financial Goods (은행 금융상품에서 프라이빗 뱅커의 전문투자형 사모펀드 추천 의사결정)

  • Yu, Hwan;Lee, Young-Jai
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.333-358
    • /
    • 2019
  • Purpose The study aims to develop a data-based decision model for private bankers when recommending hedge funds to their customers in financial institutions. Design/methodology/approach The independent variables are set in two groups. The independent variables of the first group are aggressive investors, active investors, and risk-neutral type investors. In the second group, variables considered by private bankers include customer propensity to invest, reliability, product subscription experience, professionalism, intimacy, and product understanding. A decision-making variable for a private banker is in recommending a first-rate general private fund composed of foreign and domestic FinTech products. These contain dependent variables that include target return rate(%), fund period (months), safeguard existence, underlying asset, and hedge fund name. Findings Based on the research results, there is a 94.4% accuracy in decision-making when the independent variables (customer rating, reliability, intimacy, product subscription experience, professionalism and product understanding) are used according to the following order of relevant dependent variables: step 1 on safeguard existence, step 2 on target return rate, step 3 on fund period, and step 4 on hedge fund name. Next, a 93.7% accuracy is expected when decision-making uses the following order of dependent variables: step 1 on safeguard existence, step 2 on target return rate, step 3 on underlying asset, and step 4 on fund period. In conclusion, a private banker conducts a decision making stage when recommending hedge funds to their customers. When examining a private banker's recommendations of hedge funds to a customer, independent variables influencing dependent variables are intimacy, product comprehension, and product subscription experience according to a categorical regression model and artificial neural network analysis model.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

A Study on Oil Price Risk Affecting the Korean Stock Market (한국주식시장에 파급되는 국제유가의 위험에 관한 연구)

  • Seo, Ji-Yong
    • The Korean Journal of Financial Management
    • /
    • v.24 no.4
    • /
    • pp.75-106
    • /
    • 2007
  • In this study, it is analyzed whether oil price plays a major role in the pricing return on Koran stock market and examined why the covariance risk between oil and return on stock is different in each industry. Firstly, this study explores whether the expected rate of return on stock is pricing due to global oil price factors as a function of risk premium by using a two-factor APT. Also, it is examined whether spill-over effects of oil price volatility affect the beta risk to oil price. Considering the asymmetry of oil price volatility, we use the GJR model. As a result, it shows that oil price is an independent pricing factor and oil price volatility transmits to stock return in only electricity and electrical equipment. Secondly, the two step-analyzing process is introduced to find why the covariance between oil price factor and stock return is different in each industry. The first step is to study whether beta risk exists in each industry by using two proxy variables like size and liquidity as control variables. The second step is to grasp the systematic relationship between the difference of liquidity and size and beta to oil price factor by using the panel-data model which can be analyzed efficiently using the cross-sectional data formed with time series. Through the analysis, we can argue that oil price factor is an independent pricing factor in only electricity and electrical equipment having the greatest market capitalization, and know that beta risk to oil price factor is a proxy of size in the other industries. According to the result of panel-data model, it is argued that the beta to oil price factor augments when market capitalization increases and this fact supports the first assertion. In conclusion, the expected rate of return of electricity and electrical equipment works as a function of risk premium to market portfolio and oil price, and the reason to make beta risk power differentiated in each industry attributes to the size.

  • PDF

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

An Empirical Study on Investment Performance using Properties of Realized Range-Based Volatility and Firm-Specific Volatility (실현범위변동성(RRV) 및 기업고유변동성의 속성과 투자성과 측정)

  • Byun, Youngtae
    • Management & Information Systems Review
    • /
    • v.33 no.5
    • /
    • pp.249-260
    • /
    • 2014
  • This paper explores the relationship between firm-specific volatility and some firm characteristics such as size, the market-to-book ratio of equity, PER, PBR, PCR, PSR and turnover in KOSDAQ market. In addition, I investigate whether portfolios with difference to realized range-based volatility and firm-specific volatility have different investment performance using CAPM and FF-3 factor model. The main findings of this study can be summarized as follows. First, firm-specific volatility have mostly positive relationship between firm-specific volatility and some firm characteristics. Second, this study found that realized range-based volatility and firm-specific volatility are positively related to expected return. It means that portfolios with high idiosyncratic volatility have significantly higher expected return than portfolios with low firm-specific volatility.

  • PDF

Landscape Design for Integrated Disposal Treatment Facility in Southern Region (남부 광역 생활폐기물 종합처리시설 조경설계)

  • 민권식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.11-22
    • /
    • 2003
  • This landscape design proposal was presented to a design competition for the Incheon-city Southern Region Integrated Disposal Treatment Facility. The site is located in Dongchun-dong, Yeonsu-gu, Incheon. The main design concepts are as follows: First, considering connection of the site with surrounding water, inner sea is designed as an environmentally friendly place and as a leisure-sports theme park in which several sports facilities and relaxing places are arranged. It is also designed for everyone: people of all ages, disabled, workers, visitors and local residents. The design was processed on the basis of survey, analysis of surrounding competing facilities and SWOT analysis. Second, the ecological planting model was developed by analyzing the natural vegetation map in the surrounding area and planted vegetation types in the seaside reclamation area. The model was then applied to the ecological community, park area and roadside trees, so as to harmonize with the local habitat. Third, the project is intended to launch private capital for managing the sports park and golf course. This will enable a entrepreneur to make flexible plans for golf training field that is expected to yield a good financial return. It is expected that this design would serve the local residents as a symbolic, environmentally friendly leisure-sports theme park.

Development of Return flow rate Prediction Algorithm with Data Variation based on LSTM (LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2022
  • The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

A StudyOn the Maximization of Enterprise Equity through Customer Experience Management (고객경험관리를 통한 기업가치 극대화 방법에 관한 연구)

  • Kin Han-Xin;Kim Young-Min;Lee Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.103-114
    • /
    • 2006
  • Today the usage of DB already becomes an important issue for many companies' survival. Especially, the companies which have adopted CRM could not gain the return to be expected because of the lack of understanding about the relationship with customers. Professor Schmitt introduced 'the complete CEM(Customer Experience Management) model', but no specific methodology for analysis was introduced. Therefore, in this study we use HOQ, GA, and ANP to build 'the complete CEM model' and present the integrated CEM model based on the integrated analytic process to help the company's decision about the stage to be begun first out of 5 stages of CEM and the priorities of investment in customer experiences.

Assessing the Factors that Drive Consumers' Intention to Continue Using Online Travel Agencies: A Heuristic-systematic Model Perspective

  • Hyunae Lee;Namho Chung
    • Asia pacific journal of information systems
    • /
    • v.29 no.3
    • /
    • pp.468-488
    • /
    • 2019
  • As the growth of online travel agencies (hereafter OTAs) accelerates, competition among hotels to gain exposure on the first page of OTA websites, and the financial burden, such as commissions hotels have to pay in return, are increasing. Therefore, to facilitate successful management in the tourism industry, it is important to establish what makes people continue the practice of using OTAs to book rooms in hotels and other accommodation outlets. By adopting the heuristic-systematic model (HSM), this study explores the factors that drive consumers' continued use of OTA and classifies them into heuristic cues (brand awareness, cost saving, and scarcity message) and systematic cues (recommendation quality and the ability to provide reputation). Furthermore, we divided the sample based on the location of hotels within and outside Korea, and investigated the different roles of the cues between two models. The results are expected to provide theoretical and practical implications for both OTAs and hotels.

Relation between Risk and Return in the Korean Stock Market and Foreign Exchange Market (주가와 환율의 위험-수익 관계에 대한 연구)

  • Park, Jae-Gon;Lee, Phil-Sang
    • The Korean Journal of Financial Management
    • /
    • v.26 no.3
    • /
    • pp.199-226
    • /
    • 2009
  • We examine the intertemporal relation between risk and return in the Korean stock market and foreign exchange market based on the two factor ICAPM framework. The standard GARCH model and the GJR(1993) model are employed to estimate conditional variances of the stock returns and foreign exchange rates. The covariance between the rates of stock returns and changes in the exchange rates are estimated by the constant conditional correlation model of Bollerslev(1990) and the dynamic conditional correlation model of Engle(2002). The multivariate GARCH in mean model and quasi-maximum likelihood estimation method, consequently, are applied to investigate riskreturn relation jointly. We find that the estimated coefficient of relative risk aversion is negative and statistically significant in the post-financial crisis sample period in the Korean stock market. We also show that the expected stock returns are negatively related to the dynamic covariance with foreign exchange rates. Both estimated parameters of conditional variance and covariance in the foreign exchange market, however, are not statistically significant. The GJR model is better than the standard GARCH model to estimate the conditional variances. In addition, the dynamic conditional correlation model has higher explanatory power than the constant correlation model. The empirical results of this study suggest following two points to investors and risk managers in hedging and diversifying strategies for their portfolios in the Korean stock market: first, the variability of foreign exchange rates should be considered, and second, time-varying correlation between stock returns and changes in foreign exchange rates supposed to be considered.

  • PDF