• Title/Summary/Keyword: expected frequency

Search Result 2,002, Processing Time 0.033 seconds

Natural frequency of a composite girder with corrugated steel web

  • Moon, Jiho;Ko, Hee-Jung;Sung, Ik Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.255-271
    • /
    • 2015
  • This paper presents the natural frequency of a composite girder with corrugated steel web (CGCSW). A corrugated steel web has negligible in-plane axial stiffness, due to the unique characteristic of corrugated steel webs, which is called the accordion effect. Thus, the corrugated steel web only resists shear force. Further, the shear buckling resistance and out-of-plane stiffness of the web can be enhanced by using a corrugated steel web, since the inclined panels serve as transverse stiffeners. To take these advantages, the corrugated steel web has been used as an alternative to the conventional pre-stressed concrete girder. However, studies about the dynamic characteristics, such as the natural frequency of a CGCSW, have not been sufficiently reported, and it is expected that the natural frequency of a CGCSW is different from that of a composite girder with flat web due to the unique characteristic of the corrugated steel web. In this study, the natural frequency of a CGCSW was investigated through a series of experimental studies and finite element analysis. An experimental study was conducted to evaluate the natural frequency of CGCSW, and the results were compared with those from finite element analysis for verification purpose. A parametric study was then performed to investigate the effect of the geometric characteristics of the corrugated steel web on the natural frequency of the CGCSW. Finally, a simplified beam model to predict the natural frequency of a CGCSW was suggested.

Search Frequency in Internet Portal Site and the Expected Stock Returns (포털사이트에서의 피검색빈도와 주식수익률)

  • Ban, Ju-Il;Kim, Myeong-Ae;Cheon, Yong-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.73-83
    • /
    • 2016
  • NAVER provides search frequency data of search terms via its DataLab service (http://datalab.naver.com/). Using this data, this paper examines the relation between the search frequency of firm's name and its future stock returns. Our results show that the search frequency of firm's name is a new investor attention measure, which is different from previously explored attention measures such as extreme returns, turnover, etc. Firms that go through higher search frequency this week tend to have higher returns in the next week. We do not find return reversal in the long run for the firms with higher search frequency. Furthermore, the extent to which search frequency affects stock returns becomes more pronounced following market-wide attention grabbing events. Our results indicate that search frequency incorporates information for future stock returns.

Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes (탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, You-Ha;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.

On a Suitable Frequency consideration of 700MHz Band for the disaster radiocommunication followed with DTV frequency reallocation (700MHz대역 DTV용전환에 따른 재난무선통신용 주파수 분배의 정책적 접근방안에 관한 연구)

  • Moon, Hun-Il;Yu, Seung-Duk;Hong, Wan-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • In this paper, Switching to digital TV broadcasting and mobile operators license expiration period of the frequency, time and 700MHz, 800MHz and 900MHz frequency band plan for the redistribution is actively being discussed. Redistribution policy direction of these frequency 800MHz (bandwidth 10MHz) integrated command frequency for wireless networks(i.e TETRA) is expected to be considered a redistribution. These Integrated Wireless Network Infrastructure configurations at the time and data communication capabilities of the system unwilling TETRA Release 2 standard for the system is presented. This system is analyzed that Release 1 of the existing system takes up more than 6 times the increase of frequency bands. Therefore, integration of the frequency band assigned to the command of a wireless network with the introduction of advanced systems will not be able to do. In this paper to the digital TV transition, and the policy based on analysis of trends in the 700MHz band for the integration of wireless networks, provides policy direction for the allocation plan.

  • PDF

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Study on a Quantitative Risk Assessment of a Large-scale Hydrogen Liquefaction Plant (대형 수소 액화 플랜트의 정량적 위험도 평가에 관한 연구)

  • Do, Kyu Hyung;Han, Yong-Shik;Kim, Myung-Bae;Kim, Taehoon;Choi, Byung-Il
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.609-619
    • /
    • 2014
  • In the present study, the frequency of the undesired accident was estimated for a quantitative risk assessment of a large-scale hydrogen liquefaction plant. As a representative example, the hydrogen liquefaction plant located in Ingolstadt, Germany was chosen. From the analysis of the liquefaction process and operating conditions, it was found that a $LH_2$ storage tank was one of the most dangerous facilities. Based on the accident scenarios, frequencies of possible accidents were quantitatively evaluated by using both fault tree analysis and event tree analysis. The overall expected frequency of the loss containment of hydrogen from the $LH_2$ storage tank was $6.83{\times}10^{-1}$times/yr (once per 1.5 years). It showed that only 0.1% of the hydrogen release from the $LH_2$ storage tank occurred instantaneously. Also, the incident outcome frequencies were calculated by multiplying the expected frequencies with the conditional probabilities resulting from the event tree diagram for hydrogen release. The results showed that most of the incident outcomes were dominated by fire, which was 71.8% of the entire accident outcome. The rest of the accident (about 27.7%) might have no effect to the population.

Validation on the Application of Bluetooth-based Inertial Measurement Unit for Wireless Gait Analysis (무선 보행 분석을 위한 블루투스 기반 관성 측정 장치의 활용 타당성 분석)

  • Hwang, Soree;Sung, Joohwan;Park, Heesu;Han, Sungmin;Yoon, Inchan
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The purpose of this paper is to review the validation on the application of low frequency IMU(Inertial Measurement Unit) sensors by replacing high frequency motion analysis systems. Using an infrared-based 3D motion analysis system and IMU sensors (22 Hz) simultaneously, the gait cycle and knee flexion angle were measured. And the accuracy of each gait parameter was compared according to the statistical analysis method. The Bland-Altman plot analysis method was used to verify whether proper accuracy can be obtained when extracting gait parameters with low frequency sensors. As a result of the study, the use of the new gait assessment system was able to identify adequate accuracy in the measurement of cadence and stance phase. In addition, if the number of gait cycles is increased and the results of body anthropometric measurements are reflected in the gait analysis algorithm, is expected to improve accuracy in step length, walking speed, and range of motion measurements. The suggested gait assessment system is expected to make gait analysis more convenient. Furthermore, it will provide patients more accurate assessment and customized rehabilitation program through the quantitative data driven results.

Research for Effective Vibrational Rapping Performance of Multiple Electrostatic Precipitators in Series and Parallel Arrangements (전기집진기의 직렬 및 병렬식 배열에 따른 효율적인 진동 탈진에 대한 연구)

  • Choi, Ji-Hyun;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4136-4141
    • /
    • 2013
  • One of the most significant requisite that should be considered for effective rapping of the electrostatic precipitator using electromagnetic vibration exciter is vibration acceleration and resonance frequency of collecting plates. This vibration acceleration shows its peak points when natural frequencies of the system are corresponded with excitation frequency from the power source, and effective rapping performance can be expected. In this research, extend view of single electrostatic precipitator using one electromagnetic vibration exciter, the system was remodeled by arrangement of the exciters in view of multiple modules of the electrostatic precipitator in fields. And vibration acceleration measurement experiment is performed and measured values are compared with these remodeled systems. By this experimental comparison in series and parallel arrangement, effectiveness of arrangement methods for the electromagnetic vibration exciter, expected rapping performance, and power consumption are verified.

Associations between single-nucleotide polymorphisms of the interleukin-18 gene and breast cancer in Iraqi women

  • Zakariya, Bilal Fadil;Almohaidi, Asmaa M. Salih;Simsek, Secil Akilli;Kamal, Areege Mustafa;Al-Dabbagh, Wijdan H.;Al-Waysi, Safaa A.
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.18.1-18.7
    • /
    • 2022
  • According to long-term projections, by 2030, the world's population is predicted to reach 7.5 billion individuals, and there will be roughly 27 million new cancer cases diagnosed. The global burden of breast cancer (BC) is expected to rise. According to the Ministry of Health-Iraqi Cancer Registry, cancer is the second largest cause of death after cardiovascular disease. This study investigated the interleukin-18 (IL18) single-nucleotide polymorphisms (SNPs) -607C/A rs1946518 and -137G/C rs187238 using the sequence-specific amplification-polymerase chain reaction approach. Regarding the position -607C/A, there was a highly significant difference between the observed and expected frequencies in patients and controls (χ2 = 3.16 and χ2 = 16.5), respectively. The AA and CA genotypes were associated with significantly increased BC risk (odds ratio [OR], 3.68; p = 0.004 and OR, 2.83; p = 0.04, respectively). Women with the A allele had a 5.03-fold increased susceptibility to BC. The C allele may be a protective allele against BC (OR, 0.19). Although position -137G/C showed no significant differences in the CC genotype distribution (p = 0.18), the frequency of the CC genotype was significantly higher in patients than in controls. In contrast, patients had a significantly higher frequency of GC genotypes than controls (p = 0.04), which was associated with an increased risk of developing BC (OR, 2.63). The G allele frequency was significantly lower in patients than in controls (55.0% vs. 76.2%, respectively). This SNP may be considered a common genotype in the Iraqi population, with the wild-type G allele having a protective function (OR, 0.19) and the mutant C allele having an environmental effect (OR, 2.63).

Projecting forest fire potential in the Baekdudaegan of the Chungcheong region under the SSP scenario climate change using KBDI Drought Index (KBDI 가뭄지수를 이용한 SSP 기후변화 시나리오하의 충청지역 백두대간 산불 잠재력 전망)

  • Choi, Jaeyong;Kim, Su-Jin;Jung, Huicheul;Kim, Sung-Yeol;Moon, Geon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, climate change has been regarded as a major cause of large-scale forest fires worldwide, and there is concern that more frequent and severe forest fires will occur due to the level of greenhouse gas emissions. In this study, the daily Keetch and Byram Drought Index (KBDI) of the Baekdudaegan in Chungcheong region including Sobaeksan, Songnisan, and Woraksan National Parks were calculated to assess effect of climate change on the forest fire potential- severity of annual maximum KBDI and frequency of high KBDI days. The present (2000~2019) and future KBDI(2021~2040, 2041~2060, 2081~2090) were calculated based on the meteorological observation and the ensemble regional climate model of the SSP1-2.6 and SSP5-8.5 scenarios with a spatial resolution of 1-km provided by Korea Meteorological Administration(KMA). Under the SSP5-8.5 scenario, 6.5℃ increase and 14% precipitation increase are expected at the end of the 21st century. The severity of maximum daily KBDI increases by 48% (+50mm), and the frequency of high KBDI days (> 100 KBDI) increases more than 100 days, which means the high potential for serious forest fires. The analysis results showed that Songnisan National Park has the highest potential for forest fire risk and will continue to be high in intensity and frequency in the future. It is expected that the forest vulnerability of the Baekdudaegan in the Chungcheong region will greatly increase and the difficulty in preventing and suppressing forest fires will increase as the abundance of combustible materials increases along with climate changes.