• Title/Summary/Keyword: expansion behavior

Search Result 850, Processing Time 0.027 seconds

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

A Study on Social Sharing of Scholarly Information Resources: Focusing on Laypeople's Information Needs and Behaviors (학술정보자원의 사회적 공유에 관한 연구 - 일반인의 정보요구와 행위를 중심으로 -)

  • Kim, Chohae;Park, Ji-Hong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.2
    • /
    • pp.57-82
    • /
    • 2022
  • Today, despite the increase in professional knowledge-related information needs of citizens, the expansion of citizen participatory research in academia, and the provision of information services for the professional knowledge, there are still difficulties in access to scholarly information resources by laypeople. Focusing on this problem, this study investigates laypeople's scholarly information needs and behaviors through a questionnaire survey. By examining the search and use behaviors of scholarly information resources, and the perception of the need to support the utilization of them, this study analyzes the degree and pattern of social sharing of scholarly information resources beyond the scholarly community. This study is significant in that it expands the range of users in traditional scholarly communication and emphasizes the need to support them to access and use scholarly information resources.

Deep Learning-based Pet Monitoring System and Activity Recognition device

  • Kim, Jinah;Kim, Hyungju;Park, Chan;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, we propose a pet monitoring system based on deep learning using an activity recognition device. The system consists of a pet's activity recognition device, a pet owner's smart device, and a server. Accelerometer and gyroscope data were collected from an Arduino-based activity recognition device, and the number of steps was calculated. The collected data is pre-processed and the amount of activity is measured by recognizing the activity in five types (sitting, standing, lying, walking, running) through a deep learning model that hybridizes CNN and LSTM. Finally, monitoring of changes in the activity, such as daily and weekly briefing charts, is provided on the pet owner's smart device. As a result of the performance evaluation, it was confirmed that specific activity recognition and activity measurement of pets were possible. Abnormal behavior detection of pets and expansion of health care services can be expected through data accumulation in the future.

Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ (산화물이 Doping된 YSZ의 고온 열처리에 따른 Monoclinic 상변화 및 미세구조 분석)

  • Gye-Won, Lee;Yong-Seok, Choi;Chang-Woo, Jeon;In-Hwan, Lee;Yoon-Suk, Oh
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.468-476
    • /
    • 2022
  • Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200℃ or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique (비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Lee, Joon-Hyun
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Tensile residual stress is occurred by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite with occurring of compressive residual stress in the matrix by its shape memory effect. A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding effect of the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at low temperature. The damage degree for the specimen that underwent thermal shock cycles was also discussed.

Development and Operation of Remote Lone-Senior Monitoring System Based on Heterogeneous IoT Sensors and Deep Learning (이종 사물인터넷 센서와 딥러닝에 기반한 독거노인 원격 모니터링 시스템의 개발 및 운영 사례 연구)

  • Yoon, Young;Kim, Hyunmin;Lee, Siwoo;Pouri, Safa Siavash
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.387-398
    • /
    • 2022
  • This paper presents a system that remotely monitors lone seniors at home and promptly alarms caregivers to recommend appropriate medical care services upon detecting abnormal behavior and critical conditions such as collapsing, excessive coughing, degradation of sleep quality, fever, and unusual indoor moving lines. Our system offers contactless monitoring techniques based on heterogeneous IoT sensors and deep learning to minimize the disruption to lone senior's daily life. In addition to the design and implementation of the sensor data collection and analysis system, we share our experience in installation, deployment, configuration, maintenance of the system through the case study conducted on the actual lone seniors living in Seoul Metropolitan. Based on our research, we recommend further development directions to prepare for the nationwide expansion of our system.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

Evaluation of Yield Surfaces of Epoxy Polymers Considering the Influence of Crosslinking Ratio: A Molecular Dynamics Study (분자동역학 해석 기반 가교율에 따른 에폭시 폴리머의 항복 표면 형상 평가)

  • Jinyoung Kim;Hyungbum Park
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.369-376
    • /
    • 2023
  • This study focuses on investigating the influence of epoxy polymer crosslinking density, a crucial aspect in composite material matrices, on the yield surface using molecular dynamics simulations. Our approach involved generating epoxy models with diverse crosslinking densities and subjecting them to both uniaxial and multiaxial deformation simulations, accounting for the elasto-plastic deformation behaviors. Through this, we obtained key mechanical parameters including elastic modulus, yield point, and strain hardening coefficient, all correlated with crosslinking conversion ratios. A particularly noteworthy finding is the rapid expansion of the yield surface in the biaxial compression region with increasing crosslinking ratios, compared to the uniaxial tensile region. This unique behavior led to observable yield surface variations, indicating a significant pressure-dependent relationship of the yield surface considering plastic strain and crosslinking conversion ratio. These results contribute to a deeper understanding of the complex interplay between crosslinking density and plastic mechanical response, especially in the aspect of multiaxial deformation behaviors.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

Evaluation on Damage Effect according Displacement Behavior of Underground Box Structure (지하박스구조물의 변위거동에 따른 손상영향 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.565-570
    • /
    • 2024
  • Recently, due to adjacent excavation work such as new buildings and common tunnel expansion concentrated around the urban railway, deformation of the underground box and tunnel structure of the urban railway built underground has occurred, and as a result, repair and reinforcement work is frequently carried. In addition, the subway is responsible for large-scale transportation, so ensuring the safety and drivability of underground structures is very important. Accordingly, an automated measurement system is being introduced to manage the safety of underground box structures. However, there is no analysis of structural damage vulnerabilities caused by subsidence or uplift of underground box structures. In this study, we aim to analyze damage vulnerabilities for safety monitoring of underground box structures. In addition, we intend to analyze major core monitoring locations by modeling underground box structures through numerical analysis. Therefore, we would like to suggest sensor installation locations and damage vulnerable areas for safety monitoring of underground box structures in the future.