• Title/Summary/Keyword: expansion and weight

Search Result 392, Processing Time 0.025 seconds

Exploration of the Dance Career Intervention by AHP Method: Focusing on Vocational Guidance, Career Education and Career Counseling (AHP분석을 활용한 무용진로개입의 체계적 접근 방안 : 직업지도, 진로교육 및 상담을 중심으로)

  • Kim, Ji Young;Lim, Su Jin;Kim, Hyoung Nam
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.6
    • /
    • pp.661-676
    • /
    • 2016
  • The purpose of this study is to draw a systematic access method of career intervention for dance majors. This study conducted Delphi survey and Analytic Hierarchy Process(AHP). As a result of study, 16 elements of career intervention were produced in total 4 areas. Results show that vocational guidance puts emphasis on the understanding of the various vocations, career education on the career planning and goal, career counseling on the macro-narrative to the life and career intervention network on the dance job fair and workshop. In the complex weight of all factors, ratings of weight show that dance vocation guidance and career education are demanded significantly. Results show that expansion of career alternatives, application of diversified dance career development road map to the curriculum, development of test tool and outcome standard, dance educators' systematic career intervention education and systematization of network for career support were suggested as measures for dance career intervention. This study discussed about dynamic reality and systematic access method for dance majors based on theories of Holland(1997), Super(1990), and Savickas(2005).

Characteristics of colored rice bread using the extruded HeugJinJu rice (팽화흑진주미를 이용한 흑미빵의 품질특성)

  • 황윤경;김태영
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.167-172
    • /
    • 2000
  • The characteristics of colored rice bread using the extruded HeugJinJu rice were studied to establish the optimum formula for the formation of colored rice bread, giving good loaf volume and sensory quality. The expansion ratio and bulk density were decreased, the break strength was increased as the moisture content was increased at extrusion. The gelatinization of extruded HeugJinJu rice was appropriate at 20% of moisture content. The volume of colored rice bread was decreased as the quantity of adding extruded HeugJinJu rice was increased. The weight and hardness of colored rice bread were not significantly different among the groups. The result of measurement of color difference, L value (lightness) was decreased, a value (redness) was increased and b value (yellowness) was decreased as the quantity of adding extruded HeugJinJu rice was increased. As the results of sensory evaluation, color, taste, texture and overall acceptance of colored rice bread were higher than the control group. The best quality giving color, taste, texture, total preference were observed when the extruded HeugJinJu rice was added at l0%.

  • PDF

Investigations into the Influencing Fabric Properties Factors of the 3D Shape Evaluation of Korean Hanbok Chima

  • Park, Soon-Jee
    • International Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 2006
  • This study was designed to analyze the three-dimensional shapes of Hanbok Chima made with various fabrics and to clarify the relationship between fabric properties as well as the objective and subjective evaluations of the 3D shape. For 3D shape data, a dress form (9A2 (N; nude)) was scanned with eight Chima garments made with the same number of fabrics. The scanner used was a non-contact three-dimensional human body measuring system belonging to Bunka Women's University in Japan. Data concerning the objective evaluation of the 3D shape was obtained from the measurements of the vertical and horizontal sections: those for subjective evaluation were through the sensory test after exposure to photographs from a front and side view. Four fabric factors were extracted from fabric physical properties: softness, extension, thickness of threads, and weight of fabric. Such factors as expansion (volume), sag of rear train, shape of nodes were influential in explaining the 3D shape of Hanbok Chima. From the analysis of the 3D shape, it can be deduced that with the constituent fabric stiffer, lighter, and less stretchable, the more expanded the 3D shape appeared to be. Multiple regression results showed that vertical shape factors have a greater effect on the evaluation of the 3D shape. It also implies that dependent variables of this study such as the subjective evaluation and 3D shape can be derived from regression equations on independent variables as fabric property factors or 3D shape factors. These results can enable the manufacturers to predict the 3D shape of the garment as well as the human subjective assessment to improve the efficacy of production. The investigation method proposed in this study can also be applicable to other garment items.

Lightweight Aggregate Bloating Mechanism of Clay/Incinerated Ash/Additive System (점토/소각재/첨가제계 인공 경량골재의 발포기구)

  • Kwon, Yong-Joon;Kim, Yoo-Taek;Lee, Ki-Gang;Kim, Young-Jin;Kang, Seung-Gu;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.811-816
    • /
    • 2001
  • The influence of the incinerated ash and additives on glass phase formation of lightweight aggregate, weight-lightening, and the bloating mechanism was investigated. Clay was used as base materials and incinerated ash was added from 0 to 30wt%. The additives such as $Na_2CO_3,\;CaCo_3,\;K_2CO_3,\;MgCO_3$, and a little amount of waste oil were added to the mixed body. In clay/incinerated ash/additive system, it turned out that $CaCO_3\;and\;MgCO_3$ were the components for glass phase formation and $Na_2CO_3$ was the component for both glass phase formation and weight-lightening. The small addition of waste oil from 0.5wt% to 3.0wt% affect on the bloating of aggregate. Incinerated ash had a good effect on the glass phase controlling. The most effective condition controlling glass phase and bloating of aggregate was 10wt% incinerated ash, 2wt% waste oil at 1200$^{\circ}$C. The bloating mechanism of lightweight aggregate is as follows; 1) micro-crack formation caused by thermal-shock and gas generation from inside of aggregate, 2) volume expansion by glass phase formation on the aggregate surface and rapid gas bloating inside of aggregate, 3) densification after bloating.

  • PDF

ANALYSIS AND OPTIMIZATION of INJECTION TIMING for AN ADVANCED COMPRESSED AIR ENGINE KIT

  • Kumar, Akshay;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • Increasing air pollution levels and the global oil crisis has become a major hindrance in the growth of our automobile sector. Traditional Internal Combustion engines running on non-renewable fuels are proving to be the major culprit for the harmful effects on environment. With few modifications and also with assistance of few additional components current small SI engines can be modified into a pneumatic engine (commonly known as Compressed Air Engines) without much technical complications where the working fluid is compressed air. The working principle is very basic as adiabatic expansion of the compressed air takes place inside the cylinder pushing the piston downwards creating enough MEP to run the crank shaft at decent RPM. With the assistance of new research and development on pneumatic engines can explore the potential of pneumatic engines as a viable option over IC engines. The paper deals with analysis on RPM variation with corresponding compressed air injection at different crank angles from TDC keeping constant injection time period. Similarly RPM variation can also be observed at different injection pressures with similar injection angle variation. A setup employing a combination of magnetic switch (reed switch), magnets and solenoid valve is used in order to injection timing control. A conclusive data is obtained after detailed analysis of RPM variation that can be employed in newly modified pneumatic engines in order to enhance the running performance. With a number of benefits offered by pneumatic engine over IC engines such as no emissions, better efficiency, low running cost, light weight accompanied by optimized injection conditions can cause a significant development in pneumatic engines without any major alteration.

A Study on the Fabrication of Reinforced Reaction Bonded Alumina Ceramics (반응결합 강화 알루미나세라믹스의 제조에 관한 연구)

  • 김일수;강민수;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.311-318
    • /
    • 1998
  • The reaction bonded alumina ceramics with reinforced particles which have low shrinkage were pro-duced by blending of SiC or TiC or ZrO2 powders to the mixture of Al metal and Al2O3 powder. The powd-ers were attrition milled isostantically pressed and preheated tio 110$0^{\circ}C$ with a heating rate of $1.5^{\circ}C$/min The specimens were then sintered at the temperature range 1500 to 1$600^{\circ}C$ for 5 hours with a heating rate of 5$^{\circ}C$/min. The specimens showed 5-9% weight gain and 2-9% dimensional expansion through the complete oxidation of Al after preheating up to 11--$^{\circ}C$ the overall dimensional change of the specimens after the reaction sintering at 1500-1$600^{\circ}C$ was 6-12% The maximum densities were 92% theoretical. The fine grain-ed(average grain size :0.4 ${\mu}{\textrm}{m}$) microstructure were observed in the specimen with ZrO2 and SiC. But the microstructure of specimen with TiC was relatively coarse.(average grain size : 2.1 ${\mu}{\textrm}{m}$) The mullite phase was formed by the reaction of Al2O3 and SiO2 in a specimen with SiC. In the TiC contained specimen TiC was oxidized into TiO2 and finally reacted with Al2O3 to form Al2TiO5 during sintering.

  • PDF

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy (열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사)

  • Kwon, Sunyong;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.

Estimation of Slab Response of Plate Girder Bridge in Traffic-Induced Vibration by Three-Dimensional Analysis (삼차원 해석에 의한 강합성교 바닥판의 교통유발진동 응답 평가)

  • Kim, Chul Woo;Kawatani, Mitsuo;Lee, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.263-277
    • /
    • 1998
  • Recently, it is frequently reported that fatigue damages of deck slabs and floor systems of highway bridges occur under the conditions of increasing weight and traffic of heavy vehicles. These troubles are affected by dynamic wheel load of heavy vehicles running on roadway surface roughness with bump at expansion joint. It is required that this kind of traffic-induced vibration of highway bridges must be analyzed by using three-dimensional models of bridge and vehicle. In this study, the three-dimensional dynamic analysis is carried out, and dynamic responses of deck slab and wheel loads of moving vehicle are estimated according to different vehicle speeds and bump heights. Analytical responses of bridge deck slab are compared with experimental ones which were measured at Umeda entrance bridge of Hanshin Expressway in Osaka.

  • PDF

A study on the Enhancement of Transshipment Competitiveness of Busan Port by Analyzing Factors Affecting Transshipment Competitiveness

  • Park, Ho-Chul
    • Journal of Navigation and Port Research
    • /
    • v.45 no.5
    • /
    • pp.238-251
    • /
    • 2021
  • It is understood that carriers evaluate several features of ports when fixing the T/S port. Those features can be enumerated as Geographic condition of port, Service network with overseas ports, Level of port productivity, Port infrastructure, Port services level, Port Authority's Policy direction mand Cost competitiveness. The objectives of this study are to: 1) determine if those factors could affect the T/S competitiveness of the port; and 2) to evaluate how Busan port conforms to those determinants factors in such extent. According to results of the analysis after surveying National global carrier, Intra-Asia carriers, Global overseas carriers, Terminal operators, and Busan Port Authority known to be highly influential samples, all factors were proven to be factors affecting the T/S competitiveness of the port. Meanwhile, in the analysis through AHP (Analytic Hierarchy Process) methodology about the order of weight among those factors, Cost competitiveness was answered as the most important factor. On the other hand, in the analysis to find the situation if Busan port conforms to those factors, Busan port was proven to satisfy those conditions to a moderate extent. In the analysis about the order of strength among those factors, Busan port was answered to have the highest strength in the geographic condition. However, it showed the bottom level of strength in the Cost competitiveness which was answered as the most important factor among samples for determining the T/S competitiveness of the port. This indicates that Government and Port Authority of Busan have to concentrate policy capabilities on the improvement of cost competitiveness of Busan port to enhance the T/S competitiveness. In this paper, four policy recommendations are given : Integration of Busan port operation into New port, Combining multiple operators into one or a few, Attracting Global mega carriers as the New port terminal operators, and Continuous Infrastructure expansion.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.