• 제목/요약/키워드: exogenous abscisic acid

검색결과 18건 처리시간 0.025초

Differential expression of a poplar SK2-type dehydrin gene in response to various stresses

  • Bae, Eun-Kyung;Lee, Hyo-Shin;Lee, Jae-Soon;Noh, Eun-Woon
    • BMB Reports
    • /
    • 제42권7호
    • /
    • pp.439-443
    • /
    • 2009
  • Dehydrins are group II, late embryogenesis abundant proteins that act putatively as chaperones in stressed plants. To elucidate the function of dehydrins in poplar, we isolated the $SK_2$-type dehydrin gene Podhn from Populus alba $\times$ P. tremula var. glandulosa suspension cells and analyzed its expression following treatments of abiotic stress, wounding and plant growth regulator. Sequence homology and phylogenetic analyses indicate Podhn encodes an acidic dehydrin (pI 5.14, 277 amino acids, predicted size 25.6 kDa) containing two lysine-rich "K-segments" and a 7-serine residue "S-segment", both characteristic of $SK_2$-type dehydrins. Southern blots show Podhn genes form a small gene family in poplar. Podhn was expressed in all tissues examined under unstressed conditions, but most strongly in cell suspensions (especially in the stationary phase). Drought, salt, cold and exogenous abscisic acid (ABA) treatments enhanced Podhn expression, while wounding and jasmonic acid caused its reduction. Therefore, Podhn might be involved in ABA or stress response.

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Variations in endopolyploidy level during the short period of the early growing stage in the roots and leaves of maize (Zea mays) seedlings

  • Ogawa, Atsushi;Taguchi, Nanako;Miyoshi, Kazumitsu
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.117-123
    • /
    • 2010
  • We used a flow cytometer to investigate the variations in endopolyploidy (the frequencies of nuclei with DNA contents equivalent to 4C through 16C) during the short period of the early growing stage in vigorously growing young tissues of maize seedlings. We examined different portions of the root and leaves that had been growing for 7 (day 7) and 13 (day 13) days after germination. Endoreplication showed two opposing phenomena without aging. In one case, the endopolyploidy of the first leaf was higher on day 13 than on day 7. In the latter case, endopolyploidy decreased, as clearly revealed by a comparison of the endopolyploidy of the second leaves and the 160-170 mm portion of the seminal root on days 7 and 13. Endopolyploidy was also lower in the top of the leaf. In roots, endopolyploidy was increased by the exogenous application of abscisic acid for only 1 day. The levels of endopolyploidy increased without an increase in cell size in the roots. These results showed that endoreplication occurs in actively growing and young tissue and that the variation can be induced in the short period examined.

Molecular characterization of BrRZFPs genes encoding C3HC4 type RING zinc finger protein under abiotic stress from Chinese cabbage (Brassica rapa L.)

  • Jung, Yu Jin;Lee, Kye Dong;Cho, Yong Gu;Nou, Ill Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제40권2호
    • /
    • pp.102-110
    • /
    • 2013
  • The novel BrRZFPs genes encoding C3HC4-type RING zinc finger protein were identified from FOX (full length cDNA over-expressing) library of Brassica rapa. Ten full-length cDNAs obtained from the library encode zinc-finger protein containing 346 amino acids, designated BrRZFPs. These genes were classified into four groups by phylogenic analysis showing conserved protein sequences at both termini. The tissue distribution of BrRZFPs transcription was examined by qRT-PCR revealing ubiquitous expression pattern. However, each gene was strongly expressed in the specific tissue. Transcriptional analysis showed that those acquired 10 genes were inducible under abiotic stresses. Likewise, the transcript of BrRZFP3 was strongly induced (~12-folds) by exogenous abscisic acid, whereas the transcripts of BrRZFP1, BrRZFP2 and BrRZFP3 were (> 9-folds) induced by cold. We suggest that these BrRZFPs that function as signal or response to abiotic stress are useful for crop improvement.

Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria

  • Young Hee Lee;Yun-Hee Kim;Jeum Kyu Hong
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.358-376
    • /
    • 2024
  • Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.

In Vitro 시스템에 의한 화호형성 (In Vitro Flowering System)

  • 류장렬;이행순;이광웅
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.213-237
    • /
    • 1987
  • In vitro flowering system may minimize the confounded influence of non-floral meristem parts of plants in studying the relationship of a given treatment and flowering responses. We have induced flower buds from plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng, which circumvented the normal 2-year juvenile period before flowering. The result suggests that the adulthood of ginseng root explants in the experiment previously conducted by Chang and Hsing (1980; Nature 284: 341-342) is not prerequired to flowering of plantlets regenerated through somatic embryogenesis. We have also induced flower buds from elongated axillary brandches from cotyledonary nodes by culturing ginseng zygotic embryos, seedlings, and excised cotyledonary nodes. It was found that 6-benzyladenine (BA) supplemented to the medium was essential for flowering, whereas abscisic acid (ABA) was inhibitory. Gibberellic acid(GA3) was also required for flowering when ABA was present with BA in the medium. The results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respective-ly, in the induction of flowering of ginseng. Tran Thanh Van (1980; Int. Rev. Cytol., Suppl. IIA: 175-194) has developed the "thin cell layer system" in which the induction of shoots, roots, or flower buds from epidermal layer explants were controlled by culture conditions and exogenous growth regulators in the medium, Utilizing the thin cell layer system, Meeks-Wagner et al. (1989; The Plant Cell 1: 25-35) have cloned genes specifically expressed during floral evocation. However, the system is too tedious for obtaining a sufficient amount of plant materials for biochmical and molecular biological studies of flowering. We have developed a garlic callus culture system and one obvious advantaging over the thin cell layer system is that an abundant cells committed to develope into flower buds proliferate. When the above cells were compared by two-dimensional gel electrophoresis with those which have just lost the competence for developing into flower buds, a few putative proteins specific to floral evocation were detected. The garlic callus culture system can be further explored for elucidation of the molecular biological mechanism of floral evocation and morphogenesis.hogenesis.

  • PDF

A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

  • Baek, Dongwon;Chun, Hyun Jin;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Hong, Hyewon;Kim, Chanmin;Kim, Doh Hoon;Lee, Sang Yeol;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.111-118
    • /
    • 2016
  • MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.