• Title/Summary/Keyword: existing reinforced concrete buildings

Search Result 170, Processing Time 0.026 seconds

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Effect of introducing RC infill on seismic performance of damaged RC frames

  • Turk, Ahmet Murat;Ersoy, Ugur;Ozcebe, Guney
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.469-486
    • /
    • 2006
  • The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bare specimen was infilled without being subjected to any damage. All infilled frames were then tested under reversed-cyclic lateral loading until failure. While some of the test frames were detailed properly according to the current Turkish seismic code, others were built with the common deficiencies observed in existing residential buildings. The variables investigated were the effects of the damage level and deficiencies in the bare frame on the seismic behavior of the infilled frame. The deficiencies in the frame were; low concrete strength, inadequate confinement at member ends, 90 degree hooks in column and beam ties and inadequate length of lapped splices in column longitudinal bars made above the floor levels. Test results revealed that both the lateral strength and lateral stiffness increased significantly with the introduction of reinforced concrete infills even when the frame had the deficiencies mentioned above. The deficiency which affected the behavior of infilled frames most adversely was the presence of lap splices in column longitudinal reinforcement.

Response transformation factors and hysteretic energy distribution of reinforced concrete braced frames

  • Herian A. Leyva;Eden Bojorquez;Juan Bojorquez;Alfredo Reyes;Fabrizio Mollaioli;Omar Payan;Leonardo Palemon;Manual A. Barraza
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.313-323
    • /
    • 2024
  • Most of existing buildings in Mexico City are made of reinforced concrete (RC), however, it has been shown that they are very susceptible to narrow-band long duration ground motions. In recent years, the use of dual systems composed by Buckling Restrained Braces (BRB) has increased due to its high energy dissipation capacity under reversible cyclical loads. Therefore, in this work the behavior of RC buildings with BRB is studied in order to know their performance, specifically, the energy distribution through height and response transformation factors between the RC and simplified systems are estimated. For this propose, seven RC buildings with different heights were designed according to the Mexico City Seismic Design Provisions (MCSDP), in addition, equivalent single degree of freedom (SDOF) systems were obtained. Incremental dynamic analyses on the buildings under 30 narrow-band ground motions in order to compute the relationship between normalized hysteretic energy, maximum inter-story drift and roof displacement demands were performed. The results shown that the entire structural frames participate in energy dissipation and their distribution is independent of the global ductility. The results let propose energy distribution equations through height. Finally, response transformation factors between the SDOF and multi degree of freedom (MDOF) systems were developed aimed to propose a new energy-based approach of BRB reinforced concrete buildings.

Seismic vulnerability assessment of composite reinforced concrete-masonry building

  • Remki, Mustapha;kehila, Fouad;Bechtoula, Hakim;Bourzam, Abdelkrim
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.371-386
    • /
    • 2016
  • During the last decades, many destructive earthquakes occurred in Algeria, particularly in the northern part of the country (Chlef (1980), Constantine (1985), Tipaza (1989), Mascara (1994), Ain-Benian (1996), Ain Temouchent (1999), Beni Ourtilane (2000), and recently $Boumerd{\acute{e}}s$ (2003), causing enormous losses in human lives, buildings and equipments. In order to reduce this risk and avoid serious damages to the strategic existing buildings, the authorities of the country, aware of this risk and in order to have the necessary elements that let them to know and estimate the potential losses in advance, with an acceptable error, and to take the necessary countermeasures, decided to invest into seismic upgrade, strengthening and retrofitting of those buildings. To do so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed based on the site investigation (inspection of the building, collecting data, materials characteristics, general conditions of the building, etc.), and existing drawings (architectural plans, structural design, etc.). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper presents the methodology, based on non linear and seismic analysis of existing buildings, followed in this study and summarizes the vulnerability assessment and strengthening of one of the strategic buildings according to the new Algerian code RPA 99/version 2003. As a direct application of this methodology, both, static equivalent method and non linear dynamic analysis, of composite concrete masonry existing building in the city of "CONSTANTINE", located in the east side of ALGERIA, are presented in this paper.

Basic Seismic Protection Index by Seismic Response Analysis (지진응답해석에 의한 내진판정 기본지표)

  • Yi, Waon-Ho;Lee, Kang-Seok;Choi, Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.883-888
    • /
    • 2001
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. The main objective of this paper is to propose the basic seismic protection index (Es) suitable to Korean buildings based on the seismic evaluation of existing reinforced concrete buildings using modified strength index. This paper will focus on 1) the selection of weak and moderate earthquake waves representing Korean seismic zone, 2) the creation of the required strength ratio spectra by seismic response analysis, and 3) the proposition of the basic seismic protection index (Es) suitable to Korean seismic activity based on required strength ratio spectra

  • PDF

Static vulnerability of existing R.C. buildings in Italy: a case study

  • Maria, Polese;Gerardo M., Verderame;Gaetano, Manfredi
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.599-620
    • /
    • 2011
  • The investigation on possible causes of failures related to documented collapses is a complicated issue, primarily due to the scarcity and inadequacy of information available. Although several studies have tried to understand which are the inherent structural deficiencies or circumstances associated to failure of the main structural elements in a reinforced concrete frame, to the authors knowledge a uniform approach for the evaluation building static vulnerability, does not exist yet. This paper investigates, by means of a detailed case study, the potential failure mechanisms of an existing reinforced concrete building. The linear elastic analysis for the three-dimensional building model gives an insight on the working conditions of the structural elements, demonstrating the relevance of a number of structural faults that could sensibly lower the structure's safety margin. Next, the building's bearing capacity is studied by means of parametric nonlinear analysis performed at the element's level. It is seen that, depending on material properties, concrete strength and steel yield stress, the failure hierarchy could be dominated by either brittle or ductile mechanisms.

Experimental study and modeling of masonry-infilled concrete frames with and without CFRP jacketing

  • Huang, Chao-Hsun;Sung, Yu-Chi;Tsai, Chi-Hsin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.449-467
    • /
    • 2006
  • Most existing concrete structures in Taiwan are considered nonductile due to insufficient transverse reinforcement and poor detailing of frame elements. Such features are fairly typical for buildings constructed prior to 1997, at which time the local building code was revised based on ACI 318-95. Among these structures, many contain perimeter or partition walls made of concrete or clay brick for architectural purposes. These walls, though treated as non-structural components in common design practice, could affect the structural behavior of the buildings during an earthquake. To study the behavior of such structures under seismic load, experiments were conducted on concrete frames of various configurations to show the force-deformation relationships, damage patterns, and other characteristics of the frames. For further interest, similar units with columns jacketed by carbon-fiber-reinforced-polymer (CFRP) were also tested to illustrate the effectiveness of this technique in the retrofit of concrete frames.

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

Compression Behavior of Form Block Walls Corresponding to the Strength of Block and Grout Concrete

  • Seo, S.Y.;Jeon, S.M.;Kim, K.T.;Kuroki, M.;Kikuchi, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2015
  • This study aimed to present a reinforced concrete block system that reduces the flange thickness of the existing form block used in new buildings and optimizes the web form, and can thus capable of being used in the seismic retrofit of new and existing buildings. By conducting a compression test and finite element analysis based on the block and grouted concrete strength, it attempted to determine the compression capacity of the form block that can be used in new construction and seismic retrofit. As a result, the comparison of the strength equation from Architectural Institute of Japan to the prism compression test showed that the mortar coefficient of 0.55 was suitable instead of 0.75 recommended in the equation. The stress-strain relation of the block was proposed as a bi-linear model based on the compression test result of the single form block. Using the proposed model, finite element analysis was conducted on the prism specimens, and it was shown that the proposed model predicted the compression behavior of the form block appropriately.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.