• 제목/요약/키워드: existing foundation

검색결과 725건 처리시간 0.029초

Differential settlements in foundations under embankment load: Theoretical model and experimental verification

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.283-303
    • /
    • 2015
  • To research and analyze the differential settlements of foundations specifically, site investigations of existing railways and metro were firstly carried out. Then, the centrifugal test was used to observe differential settlements in different position between foundations on the basis of investigation. The theoretical model was established according to the stress diffusion method and Fourier method to establish an analytical solution of embankment differential settlement between different foundations. Finally, theoretical values and experimental values were analyzed comparatively. The research results show that both in horizontal and vertical directions, evident differential settlement exists in a limited area on both sides of the vertical interface between different foundations. The foundation with larger elastic modulus can transfer more additional stress and cause relatively less settlement. Differential settlement value decreases as the distance to vertical interface decreases. In the vertical direction of foundation, mass differential settlement also exists on both sides of the vertical interface and foundation with larger elastic modulus can transfer more additional stress. With the increase of relative modulus of different foundations, foundation with lower elastic modulus has larger settlement. Meanwhile, differential settlement is more obvious. The main error sources in theoretical and experimental values include: (a) different load form; (b) foundation characteristics differences; (c) modulus conversion; (d) effect of soil internal friction.

Pasternak지반 위에 놓인 Timoshenko보-기둥의 안정해석 (The Stability Analysis of Timoshenko Beam-Column on Pasternak Foundation)

  • 이용수;이병구;김선균
    • 한국강구조학회 논문집
    • /
    • 제13권1호
    • /
    • pp.91-100
    • /
    • 2001
  • 본 연구에서는 스팬의 중간지점에 신축 스프링과 회전 스프링을 가지며 Pasternak지반 위에 놓인 Timoshenko보-기둥에 대한 유한 요소법을 이용하여 안정해석을 한 것이다. 이 유한요소법에 의하여 얻어진 해는 신축스프링과 회전스프링, 전단지반이 없는 Timoshenko보-기둥의 경우에 대하여 기존해와 비교되었다. 동적안정해석에 의해 스팬 중간지점에 신축 및 회전 스프링을 가진 Pasternak지반 위해 놓인 Timoshenko보-기둥의 동적안정영역을 결정하였다.

  • PDF

A general closed-form solution to a Timoshenko beam on elastic foundation under moving harmonic line load

  • Luo, Wei-Li;Xia, Yong;Zhou, Xiao-Qing
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.387-397
    • /
    • 2018
  • In this paper, a general closed-form solution for evaluating the dynamic behavior of a Timoshenko beam on elastic foundation under a moving harmonic line load is formulated in the frequency-wavenumber domain and in a moving coordinate system. It is found that the characteristic equation is quartic with real coefficients only, and its poles can be presented explicitly. This enables the substitution of these poles into Cauchy's residue theorem, leading to the general closed-form solution. The solution can be reduced to seven existing closed-form solutions to different sub-problems and a new closed-form solution to the subproblem of a Timoshenko beam on an elastic foundation subjected to a moving quasi-static line load. Two examples are included to verify the solution.

서해암 방조제 공사 기간중 유실토량 측정시험 (A Study of sea Dike meterials loss due to Scouring and Consolidation Settlement During the Periond of Construction on Construction on the West Cost of Korea)

  • 안재숙
    • 한국농공학회지
    • /
    • 제14권1호
    • /
    • pp.2503-2519
    • /
    • 1972
  • The studies were carried out to find the cause and the quantitative evaluation of sea dike materials loss which is occured during the period of construction works for the tideland reclamation projects on the west coast of Korea. Major subjects to studies were to establish the typical relationships between the tidal flow and the movement of dike materials, the tidal-flow and the erosion, the dike materials and the ratio of material movement(losses), construction methods and the ratio of materials movement (losses). Based on the above subjects, the studies were made for the purpose of obtain the following informations; (1) Collecting and evaluaing the data of dike material losses due to foundation settlement, from designed existing dikes on the west coast. (2) By the field investigation at A-San Sea Dike, Pyong Taek Project, the Comparison would be made by the relationships between the tide velocity and the movement of dike foundation under the natural conditions and the period of construction so that find out the relationship between the dike materials of foundation situation and settlements. With regard to the dike construction works, it is so difficult to calculate the exact quantity of material losses due to the foundation settlements. The major factors that affect the settlement losses of the dike materials are: (1) Topographical variation (2) Swepting the sectional area of dike by the tide velocity. (3) Dumping riprap to the outerside of dike during the period of construction works. (4) Sectional area losses by the cause of occurence of the new tide channels. (5) material losses by the heavy storms. (6) Consolidation settlement by the foundation weakness. (7) Material losses by the earth materials by tide flow. Most hi호 material losses were occured by the Consolidation settlement due to the foundation weakness, the maximum tide velocities due to decrease the cross sectional area of the gaps and erosion of foundation due to the range of tide, Inner and outerside of dike, or dike material loses due to the tide flow. Final conclusion would be obtained by the continuous measurement of consolidation settlement at the stage of final clusure of the dike. (It is scheduled to close on the end of 1972) However, intermediate conclusion can be introduced as follows: (1) The estimation of material(losses) during the period of construction works for the existing sea-dikes up to date were only empirical. The material losses at the general closure for design was estimated at 10% of the riprap, 20% of the earth materials, and 20% of the riprap, 40% of the earth materials at the final closure of the dike. The final closure estimated double quantity to the general closure, but it is still doubt. (2) The ratio of consolidation settlements was found smaller than the calculated quantity. It can be foreseen that settlement speeds is higher thom the calculated speeds. (3) The movement of dike foundation under the natural conditions were not so depends on the geological conditions of the foundation. (4) When the tide velocities was estimated 100 at the normal tide, it was estimated 125 at the high tide and 55 at the low tide. The tide velocities at the low tide shows apparently lower than the high tide and the higher velocities at the deep water depth.

  • PDF

암반지반에서 말뚝으로 보강된 풍력발전 기초의 말뚝 근입깊이에 따른 수평저항력 거동 (Behavior of Lateral Resistance according to Embed Depth of Pile for the Wind Power Foundation Reinforced with Piles in the Rocky Layer)

  • 강기천;김동주;박진욱;어현준;박혜정;김지성
    • 한국지반신소재학회논문집
    • /
    • 제21권2호
    • /
    • pp.49-56
    • /
    • 2022
  • 본 연구는 말뚝으로 보강된 풍력발전기초의 수평저항력을 실내모형실험을 통해 구하였다. 특히 말뚝과 풍력발전기초 및 암반지반을 일체화시켜 기존의 중력식 풍력발전기초와의 수평저항력을 비교하였다. 또한 말뚝의 근입깊이를 달리하여 말뚝의 수평저항력 및 휨모멘트의 변화를 분석하였다. 그 결과 말뚝의 근입깊이가 깊어짐에 따라 수평저항력이 커짐을 알 수 있었다. 특히 암석층까지 말뚝이 근입된 경우가 사석층까지 근입된 경우보다 말뚝의 저항력 증가비가 2.11배 크게 나타났다. 말뚝이 암반지반까지 근입될 경우 최대 휨모멘트의 발생위치는 풍력발전기초와 사석층의 경계면에서 나타남을 알 수 있었다. 이를 통해 기존 중력식 풍력발전 기초보다 말뚝으로 보강된 풍력발전 기초의 수평저항력이 크게 나타남에 따라 안전성 측면에서 더 유리한 시공방법이 될 수 있을 것으로 파악된다.

국외 초고층 건축물의 대형기초 적용 사례 (A Case Study on the Design of High Capacity Foundations for High-Rise Buildings)

  • 조성한;한병권;이제만;김태범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.78-89
    • /
    • 2007
  • Two design examples of deep foundations for high-rise buildings on soft ground are introduced in this paper. The first one is a 54-story building in Ho-Chi-Minh city, Vietnam, which was designed to be founded on $2.8m{\times}1.0m$ barrette foundations with approximately 60m to 75m depth. Based on a number of design guides and existing load test data from the construction sites in Ho-Chi-Minh city, the capacity of a barrette foundation in sand or clay layered ground was calculated to be 17.2MN to 27.8MN depending on the installing depth. The second one is a 40-story building in Baku city, Azerbaijan, which was designed to be supported by 2.0m diameter bored pile foundations with approximately 23m depth. As analytical or empirical guides for the local ground conditions were very limited, the design procedure from the SNiP Code, one of Russian specifications, was adopted and used to calculate the pile capacity. The capacity of bored pile foundation in highly weathered soil was expected to be 14.8MN to 15.5MN depending on the boring depth.

  • PDF

해양말뚝 기초설계를 위한 이어도 해저지반의 특성화 (Geotechnical Characterization of the Eardo Seabed for Offshore Pile Foundation Design)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Kown, O-Soon
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.141-155
    • /
    • 1999
  • 한국해양연구소(KORDI)는 후구로(Fugro Int.)사의 도움으로 마라도에서 약 152km 떨어진 지점에 건설 예정인 이어도 해양관측기지 건설을 위해서 해저지반의 특성조사를 수행하였다. 지반조사의 근본 목적은 해양과학기지가 설치될 이어도의 해저지반의 공학적 특성을 파악하고 조사자료를 이용하여 고정식 해양구조물의 기초설계를 하기 위한 것이었다. 본 논문에서는 해저지반조사의 상세한 설명과 고정식 해양구조물의 기초설계에 필요한 설계상수를 산정하는 방법에 대해서 토론하고자 한다. 연구결과로는 해저 현장토질의 특성을 고려한 해양말뚝의 기초설계에 필요한 지반설계 상수를 제안하였다.

  • PDF

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu;Luoyan Wang;Wenxiang Shen;Fengjun Wei;Rendong Guo;Jing Wang
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.135-148
    • /
    • 2023
  • The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

무소음.무진동 스크류말뚝공법의 수치해석에 의한 거동 연구 (A Study on the Behavior of a Noise & Vibration-Free Screw Pile Method by Means of numerical analysis)

  • 김영필;정호영;하영민;오승률;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.30-37
    • /
    • 2009
  • In doing the foundation work in the downtown, the popular complaints by means of Noise and vibration have been became heavy burden. Therefore, the noise & vibration-free screw PHC pile method will contribute to the foundation work by removal of the popular complaints and improvement of the constructability. In this paper, the load bearing capacity and displacement characteristics of the noise & vibration-free screw PHC pile were analyzed. The noise & vibration-free screw PHC pile's behavior was better well than the existing PHC pile's one.

  • PDF

모형실험을 통한 복합기초의 현장 적용성 평가 (Field Applicability Evaluation of Foundation Combine with Footing and Pile by Model Test)

  • 김학문;장경준
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3729-3744
    • /
    • 2011
  • 토목구조물이 대형화되고 규모가 커짐에 따라 하부 기초 지반 조건도 위치마다 상이하게 나타나게 되어 일부구간에서 기초지반의 불균일성으로 인해 국부적으로 지내력이 부족한 경우가 빈번하게 발생되고 있다. 일반적으로 상부 구조물의 안정성 확보 차원에서 기초지반이 균질하지 않은 경우에는 가능한 보수적인 기초공법을 적용함으로써 안정성 확보를 그 주안점으로 두고 있다. 직접기초와 파일기초가 혼용되는 복합기초의 경우에 대한 연구가 미비하여 그 적용성과 안정성이 검증되지 못하고 개략검토를 통한 복합기초의 시공이 적용되고 있는 점이 원인으로 사료된다. 본 연구에서는 직접기초와 파일기초가 혼용되는 복합기초에 대한 적용가능성을 평가하고, 석고와 주문진 표준사, 쇄석 등을 이용하여 다양한 지반을 조성한 실내 모형실험을 수행하여 동일기초와 복합기초의 거동을 비교, 분석하였다. 이와 같은 모형실험을 통한 연구결과를 근거로 복합기초(직접기초+말뚝기초)와 보수적인 말뚝기초 및 전면기초의 거동을 확인하고 지내력이 급격히 변화하는 지반의 경우 기존의 기초보다 효율적이고 경제적인 복합기초의 안정성 및 적용성을 평가하였다. 그 결과, 복합기초의 적용시 보수적인 말뚝기초보다 전체적인 침하량이 증가하였으나 그 차이가 미비하였고, 구조물의 부등침하에 대한 안정성평가 결과, 적용 가능한 것으로 확인되었다.