• Title/Summary/Keyword: exhaust system

Search Result 1,696, Processing Time 0.024 seconds

The History and Characteristics of Korean Traditional Ondol(Gudle) studied through Document Analysis (문헌에 의해 분석된 한국 전통 온돌(구들)의 역사와 특성)

  • Kim, June Bong;Jeong, Sang Kyu
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.3-10
    • /
    • 2008
  • Since fire was founded in the world, human races have invented various heating methods. Ondol is traditional heating method in Korea. It is very the important work to trace the history and characteristics of Ondol which originated and was developed in the Korean peninsula. Especially, the study on Ondol will contribute to improving the present heating methods and predicting future ones. In this paper, we shall study through the analysis of documents such as oriental documents, the document of Choseon dynasty, European documents and American documents. In order to discover the origins of Ondol as one of the excellent heating method all over the world, This study aims at identifying the history and characteristics of Ondol in the Korean peninsula, through document analysis. Results of this study are as follows. 1) The first document about Ondol is Sookyongjoo(水經注), Chinese ancient geography book. Contents recorded in the book include the description related to Ondol at Kwankyesa temple which was located at the border land between Gogooryo(ancient Korea) and the northeast of China. 2) Ondol was popular heating method in Gogooryo(ancient Korea) and it was used in not only Gogooryo but also Silla Kingdom and Beakje Kingdom. Thereafter, it was also used widely in Goryo dynasty and Choseon dynasty. Thereby we know that Ondol has been used as a heating method for a long time in the Korean peninsula. 3) Ondol was covered with a floor paper since the beginning of Choseon dynasty. the paper made room clean and impacted on Korean life style. Because the floor was clean and warm, Koreans thus took off shoes and sat on the floor. 4) Ondol was spreaded to Jeju island in Korea before 16th century but wasn't used widely there. The reason was that Ondol was rare high class heating system and the weather was warm in Jeju island. 5) The overspreading of Ondol caused that poor people built roughly Ondol in the last of Choseon dynasty. So, the quality of Ondol gradually became lower and lower. 6) A westerner was impressed by the novelty of Ondol and Frank Lloyd Wright had played an important role to update and spread Ondol widely all over the world. Hailing Ondol as the ideal heating system, Frank Lloyd Wright began incorporating it in his buildings back in the U.S. and even invented a modified ondol system, using hot water running through pipes instead of the hot exhaust through flues.

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

A Development of Green Transportation Design for Special Identity of Jecheon Area - centered on Exterior Design for Development of Design Business - (제천지역의 특성화를 위한 친환경운송수단 디자인개발 - 디자인비즈니스 개발을 위한 익스테리어 디자인을 중심으로 -)

  • Mun Keum-Hi
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.175-186
    • /
    • 2006
  • In the 21C, each nation controls exhaust fumes from automobiles and makes an effort to develop alternative energy because of serious environmental problem. Jechon area has many historical and cultural archeological sites. And Jechon city sponsors various cultural events. But the way of transportation which is connected with Jecheon and around sightseeing places is general and not ready yet. Therefore, if a special means of vehicle is developed, it could play an another role of sightseeing resources. Special identity of Jecheon area for establishment of green vehicle traffic system which gives Jecheon area specific character was investigated for theoretical background. Traffic system was studied for establishment of direction through existent successful case study. Moreover content, method, structure and advantage & shortcoming etc. of vehicle that use green energy resource such as solar car, fuel cell car, hybrid car, natural gas car etc. were examined. The suitable means of vehicle for Jechon area was proposed to three directions with research and investigation. After comparison and investigation by inquiry of each section's experts, the most suitable traffic system of which energy resource of car, form of vehicles, the complement, dimension of vehicles etc. were decided. Design proposal should be drawn according to process of automobile design in decided direction. Special Exterior design of vehicle that use green energy resource connecting Jecheon and around area should be suggested in Jecheon City Hall and Chungchong-bukdo provincial office for vivify image of cleanliness area.

  • PDF

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Construction of Fuzzy Logic Based on Knowledge for Greenery Warranty Systems (그린 보증시스템을 위한 지식기반 퍼지로직 구축)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.17-25
    • /
    • 2011
  • Green IT, composed term with Green and Information Technology(IT), use IT for energy savings and carbon emission reductions. Green IT went beyond the scope of greening IT, and recently it's concept is expanded as far as counterplan of climate change including greening other industries by IT. 85% of total greenhouse gas emissions from the energy sector and 20% of them comes from transport parts, so it is time to research IT for automotive industry. In this paper, we take up the knowledge based fuzzy logic to provide life cycle analysis associated with greenhouse gas emissions for industry produced warranty claims frequently such as automobile industry. We propose a analysis method of warranty claims using expert knowledge about the warranty in car exhaust systems related to greenhouse gas emissions, past test results of malfunction, analysis of past field data, and warranty data. Furthermore, we propose life knowledge-based GWS (Greenery Warranty System). We demonstrate the applicability of IT in eco-friendly automotive industry by implementing knowledge-based fuzzy logic and applying.

Performance of Hybrid Solar Still Under Operating Conditions (하이브리드 태양열 해수담수기의 운전 조건별 성능실험)

  • Yeo, Se Dong;Lim, Byung Ju;Yu, Sang Seok;Chung, Kyung Yul;Park, Chang Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.511-519
    • /
    • 2017
  • In this study, we have performed tests to improve the productivity of hybrid solar stills, which can be operated by solar thermal energy and/or waste heat of exhaust gas from electrical generators. The experimental apparatus is a hybrid solar still with a $1m{\times}2m$ collecting area, which consists of a conventional simple solar still and a vertical multi-effect diffusion(MED) section. The experiments were conducted under various operating conditions, with two identical hybrid solar stills, using solar radiation as the energy source. The results of the tests showed that the yield of the hybrid solar still depends on the various operating conditions. Insulation at the side glasses and a lower basin seawater level increased the productivity of the hybrid solar still. Reflecting fins with less than 47% reflectivity unexpectedly decreased the total productivity. However, the various feeding flow rate of the seawater into MED part did not show clear effects on productivity in the tested range.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.