• Title/Summary/Keyword: exhaust pressure sensing

Search Result 9, Processing Time 0.027 seconds

The Development of Muffler with Controller Sensing Exhaust-gas Pressure in Automotive Exhaust System (II) (자동차 배기계의 배기압 감응형 제어 머플러 개발에 관한 연구 (II) - 배기압 감응형 제어 머플러의 소음특성과 스프링 상수 - 최초 열림 압력의 관계 -)

  • 이해철;이민호;이준서;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2003
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. A control valve and a control muffler sensing exhaust-gas pressure are made f3r developing a new muffler. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develope a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers. Finally the characteristic of noise compared with conventional muffler and muffler sensing exhuast-gas pressure.

An Experimental Study on the Development of Muffler with Cotroller Sensing Exhaust-gas Pressure in Exhaust System (배기계의 배기압 감응형 제어 머플러 개발에 관한 실험적 연구)

  • Lee, Hae-Chul;Seog, Dong-Hyun;Lee, Joon-Seo;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.892-898
    • /
    • 2000
  • This study is on the development of a new muffler composed of a valve system using an elasticity or spring. The valve system using the elasticity of spring is set along the exhaust-gas flow and designed to work itself alone the driving condition of a engine. By that reason the engine capacity is so enlarged that a muffler with controller sensing exhaust-gas pressure is able to be satisfied to noise reduction and- power enlargement more than conventional muffler. The purpose of this study is to develope the new muffler which has more noise reduction and power enlargement than conventional muffler and electric-control muffler.

  • PDF

Correlation Analysis for deriving Control Parameters in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트 제어인자 도출을 위한 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong;Baek, Chang-In
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.895-900
    • /
    • 2008
  • It is the objective of the present study to conduct correlation analysis for deriving control parameters in vertical shafts using the results obtain by the design of experiments in the preceding research. The control parameters are categorized into objective parameters, derived parameters, condition parameters, operation parameters, and sensing parameters. The maximum pressure in the shaft should be sufficiently small in order to maintain exhaust hood performance. The pressure variations between floors should also be minimized in order to maintain uniform exhaust performance between floors and to save energy for excessive pressure drop in the shaft. The standard deviation based on -4Pa is proposed as an objective parameter to control pressure in shafts. The correlation equation has been obtained between the standard deviation and the sensing parameters of outdoor temperature and the pressure at the top of the shaft.

  • PDF

The Development of Muffler with Controller Sensing Exhaust Gas Pressure in Automobile Exhaust System(1) -The general characteristics of exhaust system and characteristics of control valve- (자동차 배기계의 배기압 감응형 제어 머플러 개발(1) -배기계의 일반 특성과 제어 밸브의 특성-)

  • 이해철;이준서;윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develop a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers.

  • PDF

Development of Differential Exhaust Flow Controller using One Chip Microcontroller (단일칩 마이크로컨트롤러를 이용한 차압식 유량제어기의 개발)

  • Park, Chan-Won;Kim, Hyun-Sik;Joo, Yong-Kyu
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.89-94
    • /
    • 2002
  • In this paper, a Exhaust Flow Controller (EFC) technology for uniform application of film coater and developer device is introduced that spread and remove photo resister at semiconductor manufacturing process. Because developed EFC device uses differential pressure sensing method as a differential flow meter and embodied smart A/D conversion by using a one chip microprocessor and devised by feedback Servo control, It has shown excellent performance and stability evaluation, as maximum 2000L/min flow, capability of installation to actual semiconductor equipment.

  • PDF

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

A study on the inner flow fields characteristics of the semi-active muffler (반능동형 머플러 내부의 유동장특성에 관한 연구)

  • Park K.S.;Heo H.S.;Park S.J.;Kim D.H.;Han C.P.;Son S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1472-1477
    • /
    • 2005
  • Recently, the performance development of the exhaust system of a car is very important. The most important part of parts that constructing the exhaust system of a car is a muffler. The muffler reducing the exhaust noise from the engine influence on the engine performance directly. The inner parts of the muffler construct with the baffle and perforated pipes and so on. In the recent study, the study to design the semi-active muffler sensing the exhaust gas pressure controlling the back pressure variably with a EVV progress activity. So that the inner parts of the muffler show the complicated turbulent flow phenomena because of pulsatile flow from the engine and the structural properties and so on. The qualitative and quantitative analysis about the turbulent flow phenomena of the inner parts of the muffler is required gradually. In this study, to analysis the flow field of the inner parts of the muffler, analysis results with the PIV measurement to be able to analysis the variable change of the time and the space. Therefore, try to show the design variables to need to design the inner parts of a muffler of a car.

  • PDF

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

The Study on In-situ Diagnosis of Chemical Vapor Deposition Processes (화학기상증착 진공공정의 실시간 진단연구)

  • Jeon, Ki-Moon;Shin, Jae-Soo;Lim, Sung-Kyu;Park, Sang-Hyun;Kang, Byoung-Koo;Yune, Jin-Uk;Yun, Ju-Young;Shin, Yong-Hyeon;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • The diagnosis studies of the process of chemical vapor deposition were carried out by using in-situ particle monitor (ISPM) and self-plasma optical emission spectroscopy (SPOES). We used the two kinds of equipments such as the silicon plasma enhanced chemical vapor deposition system with silane gas and the borophosphosilicate glass depositon system for monitoring. Using two sensors, we tried to verify the diagnostic and in-situ sensing ability of by-product gases and contaminant particles at the deposition and cleaning steps. The processes were controlled as a function of precess temperature, operating pressure, plasma power, etc. and two sensors were installed at the exhaust line and contiguous with each other. the correlation of data (by-product species and particles) measured by sensors were also investigated.