• Title/Summary/Keyword: exhaust pressure

Search Result 872, Processing Time 0.034 seconds

Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling (터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석)

  • Hwang, Jin-Seok;Moon, Hee-Jang;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF

Numerical Analysis on the Pressure Characteristic and Flow Uniformity in a Ceramic Catalytic Converter for Motorcycle (2륜 자동차용 세라믹 촉매변환기내 압력특성과 유동균일도에 관한 수치해석)

  • Yi, Chung-Seub;Lee, Yonghun;Jeong, Hyomin;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2007
  • This research represents the catalytic converter for application in the motorcycle. We have to consider about catalytic converter for reducing exhaust gas strength regarding the displacement volume enlargement. The catalytic converter has been widely used to satisfy the regulations of pollutant emissions from automobiles. Recently, all catalytic converter researches are about automobile. Study about motorcycle catalytic converter has not been conducted yet. In this study, flow uniformity and pressure distribution were simulated in the monolithic inlet of catalytic converter for motorcycle. Exhaust pulsation pressure was set as transient condition about. It was found that flow uniformity shown in base model (0.85) was lower than megaphone model (0.98).

Computational and Experimental Analysis of Exhaust Pipe Pressure Distributions in a Single Cylinder Gasoline Engine (단기통 가솔린 엔진 배기단의 압력 변화에 관한 실험 및 수치해석)

  • Jeong, H.M.;Choi, S.C.;Sim, K.J.;Kim, S.H.;Koh, D.K.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-10
    • /
    • 2004
  • 본 연구는 단기통 4행정 기관의 배기단의 형상에 따른 실험과 수치해석이 소개되었다. 흡 배기 밸브가 작동하고 있고, 주요한 배기단의 변수로는 배기단 직경이 적용이 되었다. 실험결과로는 배기단의 직경에 따라 배기 압력은 많은 영향을 받았는 것으로 나타났다. 배기단의 직경이 감소하였을때, 배기압력파의 진폭과 파수가 증가되었다. 배기단의 직경이 증가 하였을 때, 배기압력파의 진폭이 감소하였다. 직경이 22mm 일 때의 소음의 주파수 분석이 16mm와 28mm 보다 진폭이 작게 나타났다.

  • PDF

The prediction of performance, exhaust emissions and EGR effect of a spark ignition engine by cycle simmulation and experimental method (스파아크 점화기관의 사이클 시뮬레이션과 실험적 방법에 의한 성능, 배출가스, EGR효과의 예측에 관한 연구)

  • 정용일;성낙원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.31-42
    • /
    • 1986
  • The prediction of performance, exhaust emissions and EGR effect is made by the SI engine cycle simulation. In this simulation several models are employed - two zome, thermodynamic combustion, mass fraction burned, heat transfer, chemical equilibrium, chemical kinetics for NOx, laminar flame speed for ignition delay. The chemical species in burned gas considered are 13 species-CO$_{2}$, CO, $O_{2}$, H$_{2}$O, H$_{2}$,OH, H, O, N$_{2}$, NO$_{2}$, N, Ar - and the cylinder pressure, burned and unburned zone temperature and composition of gas are calculated at each crank angle through the compression, ignition delay, combustion and expansion process. To check the validity of the model, experimental study is done for measuring emissions, combustion pressure and engine output. The predicted values for pressure and emissions show qualitative agreement with the measured data and the EGR effect also shows similar tendency.

  • PDF

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor (코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used a coanda nozzle for the exhaust gas recirculation in a MILD combustor. A numerical analysis was accomplished to elucidate the effect of exhaust gas entrainment toward the furnace with or without a coaxial contractor. The result of the present CFD analysis showed that the entrainment mass flow rate without a coaxial contractor had 18% larger than that with a coaxial contractor when the mixed gas outlet pressure was ambient pressure. On the other hand, if the outlet pressure increased, the mass flow rate with a contractor was larger than that without a contractor. It could be analysed by the entrainment driving force composed with the nozzle throat pressure, inlet and outlet pressures and flow cross sectional area.

A Study on Flow Characteristics of a Separate Triangular Bar Differential Pressure Flow Meter for Measuring Exhaust Flow Rate of Diesel Engine (디젤엔진 배기 가스 유량 측정용 삼각 분리 막대형 차압유량계 유량 특성 연구)

  • Lee, Choong-Hoon;Kim, Kwang-Il;Kim, Min-Chang;Park, Dong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.563-568
    • /
    • 2007
  • A separate triangular bar type differential pressure flow meter was developed for measuring exhaust gas flow rate from Diesel engine. Three kinds of the separate triangular bar flow meters whose aerodynamic angles are different one another are made and evaluated, respectively. The experimental results show that an aerodynamic shape has a effect on the pressure difference between upstream and downstream at the flow meter, that is, the thinner the shape of the separate triangular bar flow meter is, the smaller the pressure difference at the flow meter is. The separate triangular bar type flow meter was calibrated at both cold and high temperature of the gas flow. A burner system was designed for raising the gas temperature and it was well operated in controlling the gas temperature. An empirical correlation between mass flow rate and differential pressure at the separate triangular bar flow meter was obtained and the empirical correlation was also corrected by the gas temperature.

An Experimental Study on the Deodorization Performance of Exhaust Filter Unit in a Laboratory Animal Breeding Facility (실험동물 사육실에서의 Exhaust Filter Unit의 악취제거성능에 관한 실험적 연구)

  • Kwon, Soon Wook;Hong, Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.194-200
    • /
    • 2013
  • In this study, an exhaust filter unit for removing bad smells is designed and manufactured to understand the characteristics, damages, and effects on humans and animals of bad smell substances in laboratory animal breeding facilities. Using the exhaust filter unit, a deodorization performance test using ammonia gas, as a typical bad smell in an animal breeding room, was carried out for three types of activated and impregnated charcoal filters. The experimental results showed that the pressure loss of the HEPA and carbon filter was increased with flow rate and that the average deodorization performance for the case where an impregnated carbon filter was installed was a maximum value of between 93 and 96%, with various fractional flow rates ranging from 1,500 to $3,500m^3/h$ in a laboratory animal breeding room. The experimental results will also be used for the design and manufacture of a practical and efficient exhaust filter unit to cope with bad smell problems in animal breeding facilities.

Optimization of valve events in a 4 cycle reciprocating engine using measured intake and exhaust port pressures (4사이클 왕복동식 엔진에 있어서 흡배기 변동압 측정치를 이용한 흡기효율 최적화 컴퓨터 시뮬레이션)

  • 오세종;진영욱;정재화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.500-507
    • /
    • 1989
  • The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve timing influence greatly to the volumetric efficiency, it is very convenient and time saving if we can optimize these parameters by computation before we enter into long time fact finding engine tests. In this study we have developed a semi-empirical engine simulation program for the determinations of intake and exhaust valve timings, valve lifts, intake and exhaust port diameters in order to obtain highest volumetric efficiency. In this computation it requires only the measured variational pressures in intake and exhaust port. Using these variational pressures as an input data for our simulation program, we can calculate volumetric efficiency more accurately and can save computing time drastically. To confirm the validity of our simulation program we have made engine operation test in parallel and taken the experimental data. Comparing the computation result with the experimental data obtained through real engine test it has shown only the difference of 3%.

Study on the Modeling of the Intake and Exhaust Systems of an SI Engine Using GT-POWER (GT-POWER를 이용한 SI 기관 흡·배기 계통의 모델링에 관한 연구)

  • Kim, Jeong-Seok;Yoon, Keon-Sik;Woo, Seok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.779-785
    • /
    • 2011
  • Prediction of the transient pressure variations and performance parameters has been carried out for an SI engine using one of commercial software, GT-POWER. Various models were applied for the calculation of properties of the plenum chamber, exhaust manifold and catalytic convertor which are very important components included in the intake and exhaust systems.