• Title/Summary/Keyword: excitation system

Search Result 1,545, Processing Time 0.029 seconds

Brillouin Light Scattering Study of Magnetic Anisotropy in GaAs/Fe/Au System (Brillouin Light Scattering을 이용한 GaAs/Fe/Au 구조의 자기이방성)

  • Ha, Seung-Seok;You, Chun-Yeol;Lee, Suk-Mock;Ohta, Kenta;Nozaki, Takayuk;Suzuki, Yoshishige;Roy, W. Van
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.147-153
    • /
    • 2008
  • It has been well-known that the Fe/GaAs heterostructure has a small lattice mismatch of 1.4% between Fe and GaAs, and the Fe layer is grown epitaxially on the the GaAs substrate. There are rich physics are observed in the GaAs/Fe interface, and the spininjection is actively studied due to its potential applications for spintronics devices. We fabricated Fe wedge layer in the thickness range $0{\sim}3.4$ nm on the GaAs(100) surface with 5-nm thick Au capping layer. The magnetic anisotropy of the Fe/GaAs system was investigated by employing Brillouin light scattering(BLS) measurements in this study. The spin wave excitation of Fe layer was studied as the function of intensity and the in-plane angle of external magnetic field, and thickness of Fe layer. Also these various dependences were analyzed with analytic expression of spin wave surface mode in order to determine the magnetic anisotropies. It has been found that the GaAs/Fe/Au system has additional uniaxial magnetic anisotropy, while the bulk Fe has biaxial anisotropy. The uniaxial anisotropy shows increasing dependency respected to decreasing thickness of Fe layer while biaxial anisotropy is reduced with Fe film thickness. This result allows the analysis that the uniaxial anisotropy is originated from interface between GaAs surface and Fe layer.

Development of Customizable Fluorescence Detection System using 3D Printer (3D 프린터를 활용한 맞춤형 휴대용 형광측정 장치 개발)

  • Cho, Kyoung-rae;Seo, Jeong-hyeok;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.278-280
    • /
    • 2019
  • Flow cytometer is one of the instrument that can measure various optical properties of a single cell or microparticle. These parameters including size, granularity, and fluorescence intensity are determined by the physical and optical interaction of the cells with excitation light source. However, users have some difficulties such as high cost, size of instrument, and limited fluorescence selectivity. In addition, abundant data is also unintentionally acquired even though user wants to have a single optical parameter. For these reasons, the use of flow cytometer is more challenging for researchers to apply their study. Therefore, the proposed study aims to develop a low-cost portable fluorescence acquisition system using a commercially available light-emitting diode and photodiode. It is designed by a 3D printer, and fluorescence selectivities are increased by changing of the light source / optical filter / detection sensor. Various number sets of fluorescently labeled cells were measured, and its feasibility was evaluated through the proposed system. As a result, acquried fluorescence intensities were proportional to the concentration of the cells and showed high linearity.

  • PDF

Development of Technique for Predicting Horizontal Displacement of Retaining Wall Induced by Earthquake (지진시 옹벽의 수평변위 예측기법의 개발)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.143-150
    • /
    • 2021
  • To develop the technique for predicting the horizontal displacement of a retaining wall induced by an earthquake, an equation of motion that depicts the retaining wall-soil vibrating system was derived. The resulting differential equation was solved using the Runge-Kutta-Nystr?m method. Considering the pre-mentioned derivation process, the analysis procedures for obtaining horizontal displacement induced by an earthquake were programmed. The core algorithm of the displacement-force relationship, which is the main engine of the developed program, was suggested. Considering the results obtained by adopting the developed program to the assumed retaining wall under an earthquake, the relationships between the time-displacement, time-force, and displacement-force were reasonable. According to the results computed by the program, the displacements to the front direction of the wall occurred, and the displacement per cycle converged after some cycles elapsed. Displacements with a natural period were calculated, which showed that the maximum displacement was observed when the natural frequency was slightly different from the excitation frequency rather than the same values of the two frequencies. This happens because the vibrating system was modeled by two springs with different stiffness.

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

Control Method for Performance Improvement of BLDC Motor used for Propulsion of Electric Propulsion Ship (전기추진선박의 추진용으로 사용되는 브러시리스 직류전동기의 제 어방법에 따른 성능향상에 관한 연구)

  • Jeon, Hyeonmin;Hur, Jaejung;Yoon, Kyoungkuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.802-808
    • /
    • 2019
  • DC motors are used extensively on shipboard, including as the ship's winch operating motor, owing to their simple speed control and excellent output torque characteristics. Moreover, they were used as propulsion motors in the early days of electric propulsion ships. However, mechanical rectifiers, such as brushes, used in DC motors have certain disadvantages. Hence, brushless DC (BLDC) motors are increasingly being used instead. While the electrical characteristics of both types of motors are similar, BLDC motors employ electronic rectifying devices, which use semiconductor elements, instead of mechanical rectifying devices. The inverter system for driving conventional BLDC motors uses a two-phase excitation method so that the waveform of the back electromotive force becomes trapezoidal. This causes harmonics and torque ripple in the phase current switching period in which the winding wire through which the current flows is changed. Researchers have studied and presented various methods to reduce the harmonics and torque ripple. This study applies a cascaded H-bridge multilevel inverter, which implements a proportional-integral speed current controller algorithm in the driving circuit of the BLDC motor for electric propulsion ships using a power analysis program. The simulation results of the modeled BLDC motor show that the driving method of the proposed BLDC motor improves the voltage waveform of the input side of the motor and remarkably reduces the harmonics and torque ripple compared with the conventional driving method.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis (유한요소해석을 통한 해중터널의 유체동역학 해석)

  • Kim, Seungjun;Park, Woo-Sun;Won, Deok-Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.955-967
    • /
    • 2016
  • As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Diesel Engines with Tuning Damper (튜닝댐퍼를 갖는 초대형 저속 2행정 디젤엔진의 비틀림진동 특성에 관한 연구)

  • Lee, Don-Chool;Barro, Ronald D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-75
    • /
    • 2009
  • The shipbuilder's requirement for a higher power output rating has led to the development of a super large two stroke low speed diesel engines. Usually a large-sized bore engine ranging from $8{\sim}14$ cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating(mcr). Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This plays a vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanisms unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.

The Photoluminance Properties of Blue Phosphor with Chemical Composition in BaO-MgO-$Al_2O_3$ System (BaO-MgO-$Al_2O_3$계에서 조성변화에 따른 청색 형광체의 발광특성)

  • Park, Sang-Hyun;Kong, Myung-Sun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.520-525
    • /
    • 1998
  • The optical properties with chemical composition change in BaO- MgO-$AI_2O_3$, system activated by divalent Eu ion were investigated under 254nm ultraviolet(UV) and 147nm vacuum ultraviolet(VUV). These phosphors emitted a blue light at a dominant wavelength of $\lambda$=445nm under UV and VUV irradiations. It was found that the brightness of $BaMgAI_{14}O_{23}$ phosphor increased with Eu concentration up to 10% under UV but it showed a maximum emitting intensity at 5% Eu for VUV. The emitting intensity of blue color of $BaMgAl_{10}O_{l7}$ phosphor was higher than that of $BaMgAI_{14}O_{23}$for both excitation. A further improvement in brightness was obtained for $Ba_{o.9}Ca_{0.1}MaAl_{14}O_{23}$ and $Ba_{0.9}Sr_{0.1}MgAl_{10}O_{17}$ phosphor synthesized by the substition of $Ba^{+2}$ ion with O.lmole of $Ca^{+2}$ or $Sr^{+2}$ ions in $BaMgAl_{IO}O_{17}$: Eu phosphor.

  • PDF