• Title/Summary/Keyword: excavation support

Search Result 310, Processing Time 0.031 seconds

Numerical Analysis of Retaining Wall Considering Supporting Load of Adjacent Retaining Wall (인접 흙막이 구조물의 지보재 하중을 고려한 가시설의 수치해석)

  • Yoo, Chanho;You, Jaemin;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • Recently, as the building construction works have been activated, the environment in which the excavation work is proceeding in parallel with the existing structure and the adjacent excavation work is increasing. However, there is not a lot of research on this. In this study, numerical analysis was carried out for interaction analysis between former excavation construction and follow-up excavation on two excavation retaining structures in parallel with excavation. As a result of numerical analysis, if the supporting load of strut is not considered, it was analyzed that the displacement distribution in the structure can be underestimated and acting stress of strut is overestimated. It was analyzed that the support stress causes by the former excavation should be considered in order to simulate the actual behavior characteristic.

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project

  • Aksoy, C.O.;Uyar, G.G.;Posluk, E.;Ogul, K.;Topal, I.;Kucuk, K.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.869-886
    • /
    • 2016
  • Non-Deformable Support System (NDSS) is one of the support system analysis methods. It is likely seen as numerical analysis. Obviously, numerical modeling is the key tool for this system but not unique. Although the name of the system makes you feel that there is no deformation on the support system, it is not true. The system contains some deformation but in certain tolerance determined by the numerical analyses. The important question is what is the deformation tolerance? Zero deformation in the excavation environment is not the case, actually. However, deformation occurred after supporting is important. This deformation amount will determine the performance of the applied support. NDSS is a stronghold analysis method applied in full to make this work. While doing this, NDSS uses the properties of rock mass and material, various rock mass failure criteria, various material models, different excavation geometries, like other methods. The thing that differ NDSS method from the others is that NDSS makes analysis using the time dependent deformation properties of rock mass and engineering judgement. During the evaluation process, NDSS gives the permission of questioning the field observations, measurements and timedependent support performance. These transactions are carried out with 3-dimensional numeric modeling analysis. The goal of NDSS is to design a support system which does not allow greater deformation of the support system than that calculated by numerical modeling. In this paper, NDSS applied to the problems of Tunnel 34 of the same Project (excavated with NATM method, has a length of 2218 meters), which is driven in graphite schist, was illustrated. Results of the system analysis and insitu measurements successfully coincide with each other.

Deformation Characteristics and Determination of Deformation Modulus of Rocks around the Lower Gangway during Coal Mining Operation (석탄층 하반갱도 주위암반의 변형특성 및 변형계수 결정연구)

  • 이현주
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.237-250
    • /
    • 1992
  • The cavities formed by the excavation of coal seam cause unstable within rock body, leading to large displacement around adjacent roadway. This displacement brings the closure of roadway and deformation of support. Therefore, it is necessary to understand and predict the deformation characteristics of roadway while coal seam is under excavation. In this study, the observed displacements are compared with the calculated ones through the analysis using Linear Boundary Element Mothod under the elastostatic conditions, in order to determine the virgin stress state and deformation modulus which affect the deformation characteristices.

  • PDF

An Analysis on Collaborative Relationships of Stakeholders of KIAHS(Korea's Important Agricultural Heritage System) (국가중요농업유산 이해관계자의 협력관계 분석)

  • Lee, Yoo-Jick;Lee, Da-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to analyze the status of conservation and management of KIAHS(Korea's Important Agricultural Heritage System) by focusing on which of the conceptual and institutional characteristics and stakeholder activities, and to suggest improvement plans. The results were summarized as follows, first, insiders prioritize financial support and participate in plan execution and activities. Second, rural utilization and traditional agricultural succession activities and support are deficient. Third, administrators (intermediary) focuses primarily on KIAHS designation; ordinance enactment, manpower recruitment and other structural considerations are lacking. Fourth, the role of administrators (intermediary) is limited to operational funding and facility management support at the enforcement and activity stage. Fifth, outsiders besides visitors, such as the public or business enterprises, lacked participation methods. For the sustainable KIAHS, municipality must perceive agricultural heritage as a resource and recognize the importance, and treat it accordingly. The establishment of local-led conservation activities and movements must be considered in an enhanced investigation and excavation stage. The complementary policies that ensure continual support from experts from the first investigation and excavation stage to the final monitoring stage are necessary. The standards and regulations are necessary to achieve parity between conservation and maintenance of agricultural heritage, and its utilization.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

The Behavior of Retention Wall By 3-D Finite Element Method (3차원 유한요소해석에 의한 흙막이 벽체의 거동특성)

  • 이진구;장서만;전성곤;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.347-354
    • /
    • 2001
  • In this study, 3-D FEM analysis are carried out to investigate the effect of the corners and re-entrant corners which can't be analysed by 2-D analysis. The excavation shape is re-entrant type conditions. The wall displacement, earth pressure and effectiveness of the corner struts are investigated in the re-entrant case, The 3D analysis are peformed to evaluate the effect of various factors, such as re-entrant corner size, excavation depth, and presence of struts. The wall displacement and earth pressures are influenced the size of re-entrant corner. Therefore, the effect of re-entrant corner should be considered in the evaluation of the earth pressure and displacement of the corners. Finally, strut-support systems are not effective at the re-entrant corner.

  • PDF

Optimum Support Pattern Design of the Tae-Gu Subway Tunnel (대구 지하철 터널의 적정지보패턴 선정에 관한 연구)

  • 지왕률;최재진
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • This is a Double-Track Railway tunnel in typical Tae-Gu black and gray shale forming part of the No.1 Line of the Tae-Gu Subway. The main fault zone at tunnel is a moderately to highly weathered and closely jointed zone, 0.5 m wide with associated paralled jointing which is slickensided and fractured. After excavation by blasting, the soft rocks should need to be reinforced with optimal supporting pattern which might be better redesigned through the consideration of the results of in-situ rock measurements at the field. Performances fo the field tests included Point Load Test, Schmidt Hammer Test, and field joint measurement gave the detail data for the optimum support design and safe excavation of the No.1 Line of Tae-Gu Subway at the No.1-7 consturction site adn the safety of this redesigned supports system was analysed by the FDM program FLAC.

  • PDF

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.