• Title/Summary/Keyword: excavation method

Search Result 1,056, Processing Time 0.029 seconds

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

Chemical Cleaning of Iron Stains on Ceramics (화학세척제를 이용한 도자기의 철산화물 제거 특성 연구)

  • Park, Dae-Woo;Jang, Sung-Yoon;Nam, Byeong-Jik;Ham, Chul-Hee;Lim, Seong-Tae
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.345-356
    • /
    • 2011
  • To remove metal stains of the ceramics, chemical cleaning is essential case by case. This study investigated the removal characteristics of iron stains by oxalic acid and citric acid including their application methods of soaking and poultice. The soaking method in cleaning agents showed removal process by color difference and released iron contents from iron stains on ceramics. Iron stains were removed successfully from ceramics, which soaked in oxalic acid for 60 hours. However, it is recommendable to soak in 0.25M oxalic acid for one to three hours because most iron stains were disappeared in 3 hours soaking. Citric acid is less effective than oxalic acid in removing iron stains because of heavy molecular weight and low acidity. Poultices (bentonite, sepiolite, activated carbon fiber and celite) with oxalic acid were applied on contaminated ceramics. After ten hours, iron stains on ceramics were removed successfully by poultice. Among them, bentonite and sepiolite have better application. Therefore, sepiolite with 0.25M oxalic acid was applied on the iron stains of whiteware and celadon from Ma Island, and then stains were removed. However, it is judged that the application methods can be varied according to the form and depth of contaminant. In addition, the residues of poultice on the ceramics will be considered for preventing contamination.

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

A Study on the Optimal Setting of Large Uncharged Hole Boring Machine for Reducing Blast-induced Vibration Using Deep Learning (터널 발파 진동 저감을 위한 대구경 무장약공 천공 장비의 최적 세팅조건 산정을 위한 딥러닝 적용에 관한 연구)

  • Kim, Min-Seong;Lee, Je-Kyum;Choi, Yo-Hyun;Kim, Seon-Hong;Jeong, Keon-Woong;Kim, Ki-Lim;Lee, Sean Seungwon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • Multi-setting smart-investigation of the ground and large uncharged hole boring (MSP) method to reduce the blast-induced vibration in a tunnel excavation is carried out over 50m of long-distance boring in a horizontal direction and thus has been accompanied by deviations in boring alignment because of the heavy and one-directional rotation of the rod. Therefore, the deviation has been adjusted through the boring machine's variable setting rely on the previous construction records and expert's experience. However, the geological characteristics, machine conditions, and inexperienced workers have caused significant deviation from the target alignment. The excessive deviation from the boring target may cause a delay in the construction schedule and economic losses. A deep learning-based prediction model has been developed to discover an ideal initial setting of the MSP machine. Dropout, early stopping, pre-training techniques have been employed to prevent overfitting in the training phase and, significantly improved the prediction results. These results showed the high possibility of developing the model to suggest the boring machine's optimum initial setting. We expect that optimized setting guidelines can be further developed through the continuous addition of the data and the additional consideration of the other factors.

A Study on the Field Application of High Strength Joint Buried Pile Retaining Wall Method (고강도 결합 매입말뚝 흙막이 공법의 현장적용성 검토에 관한 연구)

  • Lee, Gwangnam;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.671-684
    • /
    • 2022
  • This study verified the stability of a high-strength combined buried pile retaining wall and its applicability in the field. A cast-in-place (C.I.P) retaining wall and the high-strength combined embedded pile retaining wall were compared and analyzed numerically. The numerical analysis assessed the ground behavior and stability (and thus field applicability) of a high-strength combined buried pile retaining wall using data measured in the field. The experimental results showed that the cross-sectional force and displacement of the high-strength bonded pile retaining wall were reduced by 13.6~19.7%, the shear force increased by 0.7~4.7%, and the bending moment increased by 4.5~8.8% relative to the values for the C.I.P retaining wall. Examination of the amount of subsidence in the ground around the excavation showed that the maximum settlement of the C.I.P retaining wall was 46.89 mm and that at the high-strength combined buried pile retaining wall was 39.37 mm. Overall, designing a high-strength combined embedded pile retaining wall by applying the maximum bending moment and shear force calculated using the elastic beam method to the site ground was shown to achieve the safety of all members, as member forces were generated within the elastic region.

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

Development of the Compressed Packer Grouting Device for Preventing the Inflow of Polluted Groundwater (오염지하수 유입방지를 위한 압축패커 그라우팅 장치 개발)

  • Cho, Heuy-Nam;Choi, Sang-Il
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2009
  • The compressed packer device is designed to improve the underground contamination prevention facilities of ground water wells. As for the device, the installation is simple because of the safety lock device and the compression of the casing are simple the installation is simple. There is no leakage of ground water because the pressure resistance with $4.5\;kg/cm^2$ makes it equipped with the watertightness The single casing is installed and the reaming for grouting is possible with 300 mm excavation so that installation cost can be saved. Silicon rubber is used for the compressed packer so that the extension rate is 590%. In terms of environmental pollution, it is an environmental friendly product which does not contain harmful ingredients such as Pb, Cd, and phenol. below the standard or undetectable level Furthermore, the installation costs are 35 to 62% or lower than the conventional grouting construction method and are 87% or lower than the expansion packer construction method, the new environmental technology No.47 Also, the device is designed to meet the relevant regulations such as Rules on Preserving the Ground Water Quality, The Standard on Jeju Island Ground Water Development and Facility Installation and Management, and The Plan and Guideline on Operating and Managing the Small-Scale Tap Water Facilities of Ministry of Environment and Ministry of Food, Agriculture, Forestry and Fisheries.

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sup;Park, Tae-Soon;Lee, Jong-Sun;Lee, Jun-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.