• Title/Summary/Keyword: excavation method

Search Result 1,056, Processing Time 0.024 seconds

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF

Effect of Joint Sets on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체에 작용하는 토압에 대한 절리군의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.59-69
    • /
    • 2015
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint sets as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the induced earth pressure was affected significantly by a joint set depending on the inclusion of the joint inclination angle, which induces a joint sliding condition, but the number of joint sets alone was not important, even though the earth pressure could be increased slightly as the number of joint sets is increased. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the effects of joint sets as well as rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile (횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구)

  • Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.35-43
    • /
    • 2012
  • Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

The Study on the Correlation between Unconfined Compressive Strength and Point Load Strength within the Gneiss Complex in Gyunggi Province (경기 동부 지역 편마암복합체내의 일축압축강도와 점하중강도의 상관관계에 관한 연구)

  • Cha, Areum;Song, Joonho;Choi, Hyunseok;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • The strength evaluation of rocks is a very important factor in designing and constructing tunnels or underground excavation. However, it takes a lot of time and endeavor to perform the unconfined compressive strength test for practice and a number of tests are limited. In order to make up for this method, the point load strength test is suggested. Generally, the strength of a rock differs depending on its type and region. However, as people unite the Point Load Strength Indexes of various regions and types to use in practice in many cases, they find difficulty in analogizing the exact strength. The purpose of this study is suggestion of the value in construction site by analizing the relation of both unconfined compressive and point load strength in the Gyeonggi gneiss complex.

  • PDF

A Study on the Improvement of a Charging and Initiating Method in a Tunnel Excavation (터널굴진에서 장약 및 기폭방법 개선에 관한 연구)

  • Oh, E-Hwan;Won, Yeon-Ho;Lim, Han-Uk
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • In this study, a charging density has been differently applied to all holes to improve an excavated length per round on excavating a tunnel in quartzite mine and to prevent a dead pressure phenomena and sintering phenomena. A composition initiating system using simultaneously a direct initiating system and a indirect initiating system with 2 detonators in one hole has been introduced to cut holes. As a bottom part which is difficult to make a free face are charged with a higher charging density and a column part are charged with a lower charging density, the composition charging and initiating system which the power of explosives works effectively in the rock mass is developed. As the results, a dead pressure phenomena and a sintering phenomena being often produced in a hard rock or in a long hole could be prevented. Besides, the workability was improved by about 15% and the specific charge was reduced to about 20%, as an excavated length vs. a drilled length per round could be increased over 95%.

Moment Resisting Behaviors of Railway Electric Pole Foundation According to Form Work Methods (거푸집 설치 방법에 따른 철도 전철주기초의 모멘트 저항 거동)

  • Lee, Su-Hyung;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.411-417
    • /
    • 2013
  • The moment responses of electric pole foundations for a railroad were investigated using real-scale load tests. Large overturning moments were applied to two square rigid piles with a 1.1 m width and a 2.2 m embedded depth. Two different installation methods-with and without a form-were applied to evaluate the influence of the form work on the moment capacities of the foundations. The reduction of ground strength caused by the excavation without a form is more pronounce than the decrease of frictional strength due to the smooth concrete surface with a form. From the test results, it is found that the current design method which applies a proportional coefficient to consider the effect of a form work is not appropriate. When the normal and frictional stressed is considered separately, the effect of a form work can be estimated reasonably by reducing the friction angle between soil and foundation by 20%.

Analysis of Subsidence Mechanism and Development of Evaluation Program (지반침하 메커니즘 분석 및 평가 프로그램 개발)

  • Choi Sung O.;Jeon Yang-Soo;Park Eu-Sup;Jung Yong-Bok;Chun Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.195-212
    • /
    • 2005
  • Surface subsidence which occurs with several reasons, such as collapse of gangway, discharge of groundwater, compaction of weak rock mass, and tunnel excavation in shallow depth, gives rise to a serious problem in national infra-structures. In this study, therefore, the mechanism of subsidence has been examined numerically to overcome the passive approach on subsidence occurrence area. With many kinds of numerical studies, the major geotechnical parameters have been selected and the weighted values have been defined for each parameters. Also the authors developed the numerical program which can estimate the possibility of subsidence occurrence, and proposed the decision method for objective and quantitative guideline. It is anticipated that this research will be helpful to establish the hazard map on subsidence region.

Case Study on In-situ Stress Measurement by Over-coring and Its Application to Design of a Pumped Storage Power Plant (오버코어링법에 의한 초기지압측정 및 양수발전소 설계적용사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Lee, Young-Nam
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.90-101
    • /
    • 2007
  • With increasing development of underground space, underground pumped storage power plants, which generate power by felling water in upper reservoir to lower reservoir, have been continuously constructed. For efficient and safe design, construction and maintenance or such power plants, it is very important to understand in-situ stress and the mechanical properties of the surrounding rock mass at the design stage. The power plant presented in this paper is under construction at a depth of $320{\sim}375m$. For stability evaluation of the structure, in-situ stress was measured by over-coring method. Also pressurementer test and a series or laboratory tests were performed to obtain the mechanical properties. Numerical analyses were conducted to check the efficiency of designed support patterns. The results showed that unstable areas occurred partly in the numerical model, and therefore supports were additionally applied. Finally complete stability was obtained and the following excavation has been operated successfully until now.

Structural Stability Analysis Study for Existing Subway Tunnels Using a 3D Stress-Pore Pressure Coupled Finite Element Modelling of NATM Tunneling (NATM 터널굴착시 응력-간극수압 연계 3차원 유한요소모델링을 통한 기존 지하철터널의 구조적 안정성 해석연구)

  • Kong, Byung-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.192-203
    • /
    • 2009
  • In the new Seoul-Busan high speed railroad construction specially in area of city center passage the roadbed establishment is recommended the staibility for the existing subway tunnel segments of Busan subway 1st and 2nd lines regarding the appearance condition, a quality condition and the durability of the objective facility, and it evaluates the numerical analysis using MIDAS/GTS which leads the stability of the objective facility and investigatesd tunnels. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled Finite-Element Method. Based on the results the interaction mechanism between the tunnelling and groundwater is identified. In the both of 1st and 2nd Line the maximum sinkage, unequal sinkage and the lining stress from numerical analysis are within permission and the damage degree is appearing to be disregarded. But it enforces necessary Pre-grouting in order to minimize an actual tunnel face conduct and when the tunnel is excavated it is also necessary to minimize the outflow possibility.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.