• Title/Summary/Keyword: excavation method

Search Result 1,056, Processing Time 0.03 seconds

Mechanical and hydraulic interaction between braced wall and groundwater (흙막이 벽체와 그라우트 특성에 따른 구조.수리상호 작용)

  • Nam, Teak-Soo;Yoon, Jau-Ung;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1172-1177
    • /
    • 2010
  • For the deep excavation in urban area, the braced-cut method is mainly adopted. In this case, inadequate consideration of ground water level may result in wrong prediction of structural behavior. In this study, the effects of hydraulic interaction between wall and grout were investigated using the finite element method. The maximum stress in case of confined ground water condition is obtained at the final excavation stage in the range of 70~80% of excavation depth. The stress of impermeable case is about 50% larger than that of permeable case. When the relative permeabililty of wall-grout become smaller, the stress is getting bigger. And the stress tends to converge in case of 1/100 or less of the relative permeability.

  • PDF

UNDERGROUND WATER PROBLEMS IN DEEP EXCAVATION CONSTRVCTION CONTROL AGAINST BOILING FAILURE IN DEEP EXCAVATION IN SANDY GROUND BY FIELD MONITORING

  • Iwasaki, Yoahinori
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.97-110
    • /
    • 1990
  • This paper presents a case history of a deep open cut excavation of Nakagawa section for Futuoka Subway construction which adopted observational mettled against boiling failure and completed with success by modifying construction based upon field monitoring. One of the difficult conditions for the excavation was sandy layer with high water pressure which was anticipated boiling failure. The boiling was generally considered as one of the difficult phenomena to work with the observational method because of its unpredictable catastrophic nature. Laboratory experiments showed the existence of the prefailure movements of the ground and the possibility of the application of the observational method against the boiling failure. Construction step was planned to be modified, if necessary, based upon field monitoring and was completed with success.

  • PDF

A Study on Computing Pit Excavation Volume by Terrain Surface Approximation (지형곡면해석에 의한 토공량 계산에 관한 연구)

  • 문두열;정범석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.37-43
    • /
    • 2002
  • The calculation of earthwork plays a major role in the plan or design phase of many civil engineering projects, such as seashore reclamation; and thus, it has become very important to improve upon its accuracy. There have been common drawbacks to earlier methods of ground profiling, such as dialing with sharp corners or the grid points of any tow straight lines. In this paper, we prepose an algorithm for finding a terrain surface using the natural boundary conditions and the both direction spline method, which interpolates the given three-dimensional data by using spline. As a result of this study, the algorithm of the proposed two methods to estimate pit excavation volume should provide a better accuracy than Spot height, Chambers, Chen, or Lin method. Also, the mathematical model mentioned offers maximum accuracy in estimating the volume of a pit excavation.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Application of genetic Algorithm to the Back Analysis of the Underground Excavation System (지하굴착의 역해석에 대한 유전알고리즘의 적용)

  • 장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.65-84
    • /
    • 2002
  • The Observational Method proposed by Terzaghi can be applied for the safe and economic construction projects where the exact prediction of the behavior of the structures is difficult as in the underground excavation. The method consists of measuring lateral displacement, ground settlement and axial force of supports in the earlier stage of the construction and back analysis technique to find the best fit design parameters such as earth pressure coefficient, subgrade reaction etc, which will minimize the gap between calculated displacement and measured displacement. With the results, more reliable prediction of the later stage can be obtained. In this study, back analysis programs using the Direct Method, based on the Hill Climbing Method were made and evaluated, and to overcome the limits of the method, Genetic Algorithm(GA) was applied and tested for the actual construction cases.

  • PDF

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

A study on the lateral Earth Pressure and Stress Relaxation Region According to the Infinitesimal Deformation of the Wall and Backside Earth Built by Non-excavation Method Under Railroad (철도하부 비개착공법의 벽면배면토사의 미소변형에 따른 수평토압 및 응력이완영역에 관한 연구)

  • Park, Yoon-Sik;Lee, Jun-Seok;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2393-2399
    • /
    • 2011
  • In the case where the bottom of railroad is penetrated by non-excavation construction method, the design is performed based on the assumption that there is no displacement and no change of stress However, measurement data showed that reduction of earth pressure and relaxation of stress take place by the displacement. In this study, we investigated the earth pressure on the structure under the railroad constructed by a non-excavation method and the stress relaxation region. The design based on earth pressure is non-economical because it is an over design. Relaxation of stress may lead to road base settlement and rail irregularly due to the reduced railroad supporting stiffness, to ballast crack in the case of concrete roadbed. The result showed that it is reasonable to set the stress on the structures as active earth pressure not as earth pressure at rest. Additionally, the study on the stress relaxation region identified the regions that should be supported in future construction by a non-excavation method.

  • PDF

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

A Case Study on the Applicability Evaluation of Electronic Detonator for Non-Vibration Excavation Section (무진동 굴착구간에 대한 전자뇌관의 적용성 평가 사례)

  • Seung-Won, Jung;Jin-Hyuk, Song;Nam-Sun, Hwang;Nam-Soo, Kim;Min-Sung, Jung
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • It was designed as the mechanical excavation mass method on 176m because the safety thing is located around the site. But low-vibration blasting using an electronic detonator was proposed to improve constructability and economy. As a result of the suggestion blasting, both blasting noise and vibration were safe within the allowable limit, confirming the applicability of low-vibration blasting using an electronic detonator to the section. And compared with the mechanical mass excavation method, an economic evaluation was conducted about the section, and it was evaluated that there was an economic advantage as the construction period was reduced by 88 days.

Displacement of Sand Layer during Deep Excavation (깊은 굴착에 따른 사질토 지반의 변형)

  • 유태성;신종호
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.81-92
    • /
    • 1985
  • Braced excavation for a new building was carried out at a very close proximity of an existing tall building of T.hick columns are supported by indict.ideal spread footings on sand layer The excavation was planned to reach far below the footing level of the existing building. To assess the foundation performance and stability of the existing building, the behavior of 9round subjected to loss of confinement from excavation was analytically studied using finite element method. Field instrumentation was also conducted to monitor the actual ground responses during excavation. Based on these studies, various remedial measures weere taken to minimize the adverse effects to the building, and excavation was successfully completed. This paper presents the results from the analytical studies and field monitoring, and measured and measured responses at different stages of excavation.

  • PDF