• 제목/요약/키워드: example-based synthesis

검색결과 75건 처리시간 0.023초

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

차세대 주력전차의 개념설계를 위한 동시공학의 적용 (Application of Concurrent Engineering for Conceptual design of a Future Main Battle Tank)

  • 김진우;소한균
    • 한국군사과학기술학회지
    • /
    • 제2권1호
    • /
    • pp.38-60
    • /
    • 1999
  • The main objective of this study is systemization of the technique of ROC quantification and optimization of baseline design by applying CE principle to the acquisition process of a weapon system. QFD and TOA techniques can be employed to a good working example of the conceptual design of a future main battle tank. In this paper, Product Planning Phase, the first phase of four QFD phases, is deployed in terms of eight steps including customer requirements and final product control characteristics. TOA is carried out considering only combat weight. In order to perform combat weight analysis and performance TOA, Preliminary Configuration Synthesis Methodology is used. Preliminary Configuration Synthesis Methodology employs the method of least squares and described linear equations of weight interrelation equation for each component of tank. As a result of QFD based upon the ROC, it was cleared that armor piercing power, main armament, type of ammunition, cruising range, combat weight, armor protection, power loading, threat detection and cost are primary factors influencing design and that combat weight is the most dominant one. The results of TOA based on the combat weight constraint show that 5100 lb reduction was required to satisfy the ROC. The baseline design of a future main battle tank is illustrated with assumption that all phases of QFD are employed to development and production process of subsystems, components, and parts of main battle tank. TOA is applied in iterative process between initial baseline design and ROC. The detailed design of each component is illustrated for a future main battle tank.

  • PDF

Poly(trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics

  • Hossain, Md. Sanower;Mohamed, Farahidah;Shafri, Mohd Affendi Mohd
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.65-86
    • /
    • 2020
  • As conventional drug delivery system is being improved rapidly by target-based drug delivery system, finding suitable Drug Delivery System (DDS) for new drugs remains a challenge. Although there are many drug delivery vehicles in existence, a significant improvement is required to some DDS such as for local, implant-based treatments used for musculoskeletal infections. Many polymers have been considered for providing the improvement in DDS. Synthetic polymer, for example, has gained popularity for broad-spectrum physicochemical and mechanical properties. This article reviews the biomedical applications of Poly(TriMethylene Carbonate-co-Caprolactone) (PTMCC), which has attracted attention due to its biocompatibility, biodegradability and rubber-like properties. Its synthesis, physical properties, and degradation are also discussed here. Although it is relatively new in biomedical applications, it is readily usable for the fabrication of differing format of DDS of superior mechanical strength and degradation properties. The use of PTMCC is expected to increase in coming years as more is revealed about its potentials.

New Materials Based Lab-on-a-Chip Microreactors: New Device for Chemical Process

  • 김동표
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.51-51
    • /
    • 2012
  • There is a growing interest in innovative chemical synthesis in microreactors owing to high efficiency, selectivity, and yield. In microfluidic systems, the low-volume spatial and temporal control of reactants and products offers a novel method for chemical manipulation and product generation. Glass, silicon, poly(dimethylsiloxane) (PDMS), and plastics have been used for the fabrication of miniaturized devices. However, these materials are not the best due to either of low chemical durability or expensive fabrication costs. In our group, we have recently addressed the demand for economical resistant materials that can be used for easy fabrication of microfluidic systems with reliable durability. We have suggested the use of various specialty polymers such as silicon-based inorganic polymers and fluoropolymer, flexible polyimide (PI) films that have not been used for microfluidic devices, although they have been used for other areas. And inexpensive lithography techniques were used to fabricate Lab-on-a-Chip type of microreactors with differently devised microchannel design. These microreactors were demonstrated for various synthetic reactions: liquid, liquid-gas organic chemical reactions in heterogeneous catalytic processes, syntheses of polymer and non-trivial inorganic materials. The microreactors were inert, and withstand even harsh conditions, including hydrothermal reaction. In addition, various built-in microstructures inside the microchannels, for example Pd decorated peptide nanowires, definitely enhance the uniqueness and performance of microreactors. These user-friendly Lab-on-a-Chip devices are useful alternatives for chemist and chemical engineer to conventional chemical tools such as glass.

  • PDF

Application of Virtual Studio Technology and Digital Human Monocular Motion Capture Technology -Based on <Beast Town> as an Example-

  • YuanZi Sang;KiHong Kim;JuneSok Lee;JiChu Tang;GaoHe Zhang;ZhengRan Liu;QianRu Liu;ShiJie Sun;YuTing Wang;KaiXing Wang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.106-123
    • /
    • 2024
  • This article takes the talk show "Beast Town" as an example to introduce the overall technical solution, technical difficulties and countermeasures for the combination of cartoon virtual characters and virtual studio technology, providing reference and experience for the multi-scenario application of digital humans. Compared with the live broadcast that combines reality and reality, we have further upgraded our virtual production technology and digital human-driven technology, adopted industry-leading real-time virtual production technology and monocular camera driving technology, and launched a virtual cartoon character talk show - "Beast Town" to achieve real Perfectly combined with virtuality, it further enhances program immersion and audio-visual experience, and expands infinite boundaries for virtual manufacturing. In the talk show, motion capture shooting technology is used for final picture synthesis. The virtual scene needs to present dynamic effects, and at the same time realize the driving of the digital human and the movement with the push, pull and pan of the overall picture. This puts forward very high requirements for multi-party data synchronization, real-time driving of digital people, and synthetic picture rendering. We focus on issues such as virtual and real data docking and monocular camera motion capture effects. We combine camera outward tracking, multi-scene picture perspective, multi-machine rendering and other solutions to effectively solve picture linkage and rendering quality problems in a deeply immersive space environment. , presenting users with visual effects of linkage between digital people and live guests.

EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조 (Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition)

  • 이경섭;김영순;조철기;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

가지형 공중합체를 이용한 나노구조 $TiO_2$ 제조 및 염료감응 태양전지 응용 (Synthesis of Organized $TiO_2$ Electrodes Using Graft Copolymer and Their Applications to Dye-Sensitized Solar Cells)

  • 안성훈;고주환;박정태;김종학
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • The morphology of mesoporous $TiO_2$ films plays an important role in the operation of a DSSC. For example, the energy conversion efficiency of DSSCs with well-organized mesoporous $TiO_2$ films is much higher than those with traditional films possessing a random morphology. In previous research, well-organized mesoporous $TiO_2$ films have mainly been synthesized using an amphiphilic block copolymer, e.g., a poly(ethylene oxide) (PEO)-based template. A graft copolymer is more attractive than a block copolymer due to its low cost and the ease with which it can be synthesized. In this work, we provide the first report on the successful synthesis of well-organized mesoporous $TiO_2$ films templated by an organized graft copolymer as a structure directing agent. Well-organized mesoporous $TiO_2$ films with excellent channel connectivities were developed via the sol gel processusing an organized PVC-g-POEM graft copolymer synthesized by one-pot ATRP. The careful adjustment of copolymer composition and solvent affinity using a THF/$H_2O$/HCl mixture was used to systematically vary the material structure. The influence of the material structure on solar cell performance was then investigated. A solid-state DSSC employing both the graft copolymer templated organized 700 nm-thick $TiO_2$ films and graft copolymer electrolytes exhibited a solar conversion efficiency of 2.2% at 100 $mW/cm^2$. This value was approximately two-fold higher than that attained from a DSSC employing a random mesoporous $TiO_2$ film. The solar cell performance was maximized at 4.6% when the film thickness was increased to $2.5{\mu}m$. We believe that this graft copolymer-directed approach introduces a new and simple route toward the synthesis of well-organized metal oxide films as an alternative to a conventional block copolymer-based template.

  • PDF

한국어 동시조음 모델에 기반한 스피치 애니메이션 생성 (Speech Animation Synthesis based on a Korean Co-articulation Model)

  • 장민정;정선진;노준용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권3호
    • /
    • pp.49-59
    • /
    • 2020
  • 본 논문에서는 규칙 기반의 동시조음 모델을 통해 한국어에 특화된 스피치 애니메이션을 생성하는 모델을 제안한다. 음성에 대응되는 입 모양 애니메이션을 생성하는 기술은 영어를 중심으로 많은 연구가 진행되어 왔으며, 자연스럽고 사실적인 모션이 필요한 영화, 애니메이션, 게임 등의 문화산업 전반에 널리 활용된다. 그러나 많은 국내 콘텐츠의 경우, 스피치 애니메이션을 생략하거나 음성과 상관없이 단순 반복 재생한 뒤 성우가 더빙하는 형태로 시각적으로 매우 부자연스러운 결과를 보여준다. 또한, 한국어에 특화된 모델이 아닌 언어 비의존적 연구는 아직 국내 콘텐츠 제작에 활용될 정도의 퀄리티를 보장하지 못한다. 따라서 본 논문은 음성과 텍스트를 입력받아 한국어의 언어학적 특성을 반영한 자연스러운 스피치 애니메이션 생성 기술을 제안하고자 한다. 한국어에서 입 모양은 대부분 모음에 의해 결정된다는 특성을 반영하여 입술과 혀를 분리한 동시조음 모델을 정의해 기존의 입술 모양에 왜곡이 발생하거나 일부 음소의 특성이 누락되는 문제를 해결하였으며, 더 나아가 운율적 요소에 따른 차이를 반영하여 보다 역동적인 스피치 애니메이션 생성이 가능하다. 제안된 모델은 유저 스터디를 통해 자연스러운 스피치 애니메이션을 생성함을 검증하였으며, 향후 국내 문화산업 발전에 크게 기여할 것으로 기대된다.

한국어 단모음의 지각적 모음공간과 심적 표상 (Perceptual Vowel Space and Mental Representation of Korean Monophthongs)

  • 최양규
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.287-301
    • /
    • 2003
  • The purpose of this study was to examine whether the same vowel sounds are perceived differently by the two local dialect speakers, Seoul dialect speakers (SDS) and Kyungnam dialect speakers (KDS), whose vowel systems differ each other. In the first experiment SDS and KDS heard vowels synthesized in vowel space with F1 by F2 and categorized them into one of 10 Korean monophthongs. The results showed that SDS and KDS perceived the synthesized vowels differently. For example, /$\varepsilon$ versus /e/ contrast, ${\o}$/, and /y/ are differentiated by SDS, whereas they are perceptually confused by KDS. We also observed that /i/ could not be perceived unless the vowel synthesis included F3 or higher formants. In the second experiment SDS and KDS performed the similarity rating task of 10 synthesized Korean monophthongs. Two-dimensional MDS solution based on the similarity rating scores was obtained for each dialect group. The first dimension can be named 'vowel advancement' and the second 'vowel height'. The comparison of the two MDS solutions showed that the overall psychological distances among the vowels are shorter in KDS than SDS and that especially the distance between /$\Lambda$/ and /i/ is shorter in KDS than SDS. The result suggested that perception or mental representation of vowels depends on the vowel system of the listener's dialect or language. Further research problems were discussed in the final section.

  • PDF