Browse > Article
http://dx.doi.org/10.12989/bme.2020.5.1.065

Poly(trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics  

Hossain, Md. Sanower (Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia)
Mohamed, Farahidah (Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia)
Shafri, Mohd Affendi Mohd (Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.5, no.1, 2020 , pp. 65-86 More about this Journal
Abstract
As conventional drug delivery system is being improved rapidly by target-based drug delivery system, finding suitable Drug Delivery System (DDS) for new drugs remains a challenge. Although there are many drug delivery vehicles in existence, a significant improvement is required to some DDS such as for local, implant-based treatments used for musculoskeletal infections. Many polymers have been considered for providing the improvement in DDS. Synthetic polymer, for example, has gained popularity for broad-spectrum physicochemical and mechanical properties. This article reviews the biomedical applications of Poly(TriMethylene Carbonate-co-Caprolactone) (PTMCC), which has attracted attention due to its biocompatibility, biodegradability and rubber-like properties. Its synthesis, physical properties, and degradation are also discussed here. Although it is relatively new in biomedical applications, it is readily usable for the fabrication of differing format of DDS of superior mechanical strength and degradation properties. The use of PTMCC is expected to increase in coming years as more is revealed about its potentials.
Keywords
biodegradable polymer; biomaterials; poly(trimethylene carbonate-co-caprolactone); DDS; bone disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bat, E., Plantinga, J.A., Harmsen, M.C., van Luyn, M.J.A., Zhang, Z., Grijpma, D.W. and Feijen, J. (2008), "Trimethylene carbonate and $\epsilon$-caprolactone based (co) polymer networks: mechanical properties and enzymatic degradation", Biomacromolecules, 9(11), 3208-3215. https://doi.org/10.1021/bm8007988.   DOI
2 Bat, E., Kothman, B.H.M., Higuera, G.A., van Blitterswijk, C.A., Feijen, J. and Grijpma, D.W. (2010), "Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds", Biomaterials, 31(33), 8696-8705. https://doi.org/10.1016/J.BIOMATERIALS.2010.07.102.   DOI
3 Bat, E., van Kooten, T.G., Harmsen, M.C., Plantinga, J.A., van Luyn, M.J.A., Feijen, J. and Grijpma, D.W. (2013), "Physical properties and erosion behavior of poly(trimethylene carbonate-co-${\varepsilon}$-caprolactone) networks", Macromol. Biosci., 13(5), 573-583. https://doi.org/10.1002/mabi.201200373.   DOI
4 Bertrand, N. and Leroux, J.C. (2012), "The journey of a drug-carrier in the body: An anatomo-physiological perspective", J. Control. Release, 161(2), 152-163. https://doi.org/10.1016/j.jconrel.2011.09.098.   DOI
5 Boontheekul, T. and Mooney, D.J. (2003), "Protein-based signaling systems in tissue engineering", Curr. Opion. Biotechnol., 14(5), 559-565. https://doi.org/10.1016/j.copbio.2003.08.004.   DOI
6 Burnham, N.L. (1994), "Polymers for delivering peptides and proteins", Am. J. Health-Syst. Pharm., 51(2), 210-218. https://doi.org/10.1093/ajhp/51.2.210.   DOI
7 Chen, R.R. and Mooney, D.J. (2003), "Polymeric growth factor delivery strategies for tissue engineering", Pharm. Res., 20(8), 1103-1112. https://doi.org/10.1023/A:1025034925152.   DOI
8 Damodaran, V.B., Bhatnagar, D. and Murthy, N.S. (2016), Biomedical Polymers: An Overview Biomedical Polymers: Synthesis and Processing, Springer International Publishing, New Jersey, U.S.A. https://doi.org/10.1007/978-3-319-32053-3.
9 Zhang, Z., Grijpma, D.W. and Feijen, J. (2006), "Thermoplastic elastomers based on poly (lactide)-poly (trimethylene carbonate-co-caprolactone)-poly (lactide) triblock copolymers and their stereocomplexes", J. Control. Release, 116(2), 29-31. https://doi.org/10.1016/j.jconrel.2006.09.033.
10 Zhu, K.J., Hendren, R.W., Jensen, K. and Pitt, C.G. (1991), "Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate)", Macromolecules, 24(8), 1736-1740. https://doi.org/10.1021/ma00008a008.   DOI
11 Garvin, K.L., Miyano, J.A., Robinson, D., Giger, D., Novak, J. and Radio, S. (1994), "Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. a canine model", J. Bone Joint Surg. Am., 76(10), 1500-1506. https://doi.org/10.2106/00004623-199410000-00009.   DOI
12 Zisch, A.H., Lutolf, M.P. and Hubbell, J.A. (2003), "Biopolymeric delivery matrices for angiogenic growth factors", Cardiovasc. Pathol., 12(6), 295-310. https://doi.org/10.1016/S1054-8807(03)00089-9.   DOI
13 Zurita, R., Puiggali, J. and Rodriguez-Galan, A. (2006), "Loading and release of ibuprofen in multi- and monofilament surgical sutures", Macromol. Biosci., 6(9), 767-775. https://doi.org/10.1002/mabi.200600084.   DOI
14 Dhandayuthapani, B., Yoshida, Y., Maekawa, T. and Kumar, D.S. (2011), "Polymeric scaffolds in tissue engineering application: a review", Int. J. Polym. Sci., 2011, 290602. https://doi.org/10.1155/2011/290602.
15 Fabre, T., Schappacher, M., Bareille, R., Dupuy, B., Soum, A., Bertrand-Barat, J., Baquey, C., Schappacher, M., Bareille, R., Dupuy, B. and Baquey, C. (2001), "Study of a (trimethylenecarbonate-co-${\varepsilon}$-caprolactone) polymer-part 2: In vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide", Biomaterials, 22(22), 2951-2958. https://doi.org/10.1016/S0142-9612(01)00012-6.   DOI
16 Feijen, J., Pego, A.P.P., Siebum, B., Poot, A.A., Van Luyn, M.J.A., Gallego Van Seijen, X.J., Grijpma, D.W., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003), "Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering", Tissue Eng., 9(5), 981-994. https://doi.org/10.1089/107632703322495628.   DOI
17 Gavasane, A.J. and Pawar, H.A. (2014), "Synthetic biodegradable polymers used in controlled drug delivery system: an overview", Clin. Pharm. Biopharm., 3(2), 1-7. http://dx.doi.org/10.4172/2167-065X.1000121.
18 Gentile, P., Chiono, V., Carmagnola, I. and Hatton, P. (2014), "An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering", Int. J. Mol. Sci., 15(3), 3640-3659. https://doi.org/10.3390/ijms15033640.   DOI
19 Griffith, L.G. (2002), "Emerging design principles in biomaterials and scaffolds for tissue engineering", Ann. N.Y. Acad. Sci., 961(1), 83-95. https://doi.org/10.1111/j.1749-6632.2002.tb03056.x.   DOI
20 Grijpma, D.W., Bat, E., Feijen, J., Plantinga, J.A., Harmsen, M.C., Van Luyn, M.J.A.A., Feijen, J. and Grijpma, D.W. (2010), "In vivo behavior of trimethylene carbonate and ${\varepsilon}$-caprolactone-based (co)polymer networks: Degradation and tissue response", J. Biomed. Mater. Res. Part A, 95A(3), 940-949. https://doi.org/10.1002/jbm.a.32921.   DOI
21 Han, J., Branford-White, C.J. and Zhu, L.M. (2010), "Preparation of poly(${\varepsilon}$-caprolactone)/poly(trimethylene carbonate) blend nanofibers by electrospinning", Carbohydr. Polym., 79(1), 214-218. https://doi.org/10.1016/j.carbpol.2009.07.052.   DOI
22 Hofmann, C., Qi, W., Landon, C., Therien, M., Dewhirst, M. and Palmer, G. (2013), "In vitro drug release and in vivo tumor delivery of near-infrared emissive biodegradable polymersomes containing poly (ethylene glycol) and randomized poly (trimethylene carbonate-co-caprolactone)", Proceedings of the Controlled Release Society Annual Meeting, Honolulu, Hawaii, July.
23 Hossain, M.S., Mohamed, F. and Mohd Shafri, M.A. (2019), "Gentamicin sulphate-Nigella sativa oil-loaded poly(trimethylene carbonate-co-caprolactone) beads: a promising treatment for osteomyelitis", Proceedings of the AIMST International Pharmacy Conference 2019, Bedong, Kedah Darul Aman, Malaysia, November.
24 Hou, Z., Hu, J., Li, J., Zhang, W., Li, M., Guo, J., Yang, L. and Chen, Z. (2017), "The in vitro enzymatic degradation of cross-linked poly(trimethylene carbonate) networks", Polymers, 9(11), 605. https://doi.org/10.3390/polym9110605.   DOI
25 Hu, Y. and Zhu, K.J. (2003), "Preparation, characterization and properties of poly (2, 2-dimethyl trimethylene carbonate-co-${\varepsilon}$-caprolactone)-block-poly (ethylene glycol)", J. Biomater. Sci. Polym. Ed., 14(12), 1363-1376. https://doi.org/10.1163/156856203322599707.   DOI
26 Hwang, S.J. and Davis, M.E. (2001), "Cationic polymers for gene delivery: Designs for overcoming barriers to systemic administration", Curr. Opin. Mol, Ther., 3(2), 183-191.
27 Kanellakopoulou, K., Kolia, M., Anastassiadis, A., Korakis, T., Giamarellos-Bourboulis, E.J., Andreopoulos, A., Dounis, E. and Giamarellou, H. (1999), "Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study", Antimicrob. Agents Chemother., 43(3), 714-716. https://doi.org/10.1128/AAC.43.3.714.   DOI
28 Kluin, O.S., van der Mei, H.C., Busscher, H.J. and Neut, D. (2009), "A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate)" Biomaterials, 30(27), 4738-4742. https://doi.org/10.1016/j.biomaterials.2009.05.012.   DOI
29 Kluin, O.S., van der Mei, H.C., Busscher, H.J. and Neut, D. (2013), "Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis", Expert Opin. Drug Deliv., 10(3), 341-351. doi: https://doi.org/10.1517/17425247.2013.751371.   DOI
30 Kluin, O.S., Busscher, H.J., Neut, D. and van der Mei, H.C. (2016), "Poly (trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapy-recalcitrant staphylococcal biofilms", J. Orthop. Res., 34(10), 1828-1837. https://doi.org/10.1002/jor.23194.   DOI
31 Langer, R. and Peppas, N.A. (2003), "Advances in biomaterials, drug delivery, and bionanotechnology", AIChE J., 49(12), 2990-3006. https://doi.org/10.1002/aic.690491202.   DOI
32 Liebler, D.C. and Guengerich, F.P. (2005), "Elucidating mechanisms of drug-induced toxicity", Nat. Rev. Drug Discov., 4(5), 410-420. https://doi.org/10.1038/nrd1720.   DOI
33 Maitz, M.F. (2015), "Applications of synthetic polymers in clinical medicine" Biosurf. Biotribol., 1(3), 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002.   DOI
34 Markovic, G., Marinovic-Cincovic, M., Jovanovic, V., Samarzija-Jovanovic, S. and Budinski-Simendic, J. (2016), Polymer Science: Research Advances, Practical Applications and Educational Aspects, Lisbon Formatex Research Center, Madrid, Spain.
35 Nam, K., Watanabe, J. and Ishihara, K. (2004), "Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers", Int. J. Pharm., 275(1-2), 259-269. https://doi.org/10.1016/j.ijpharm.2004.02.009.   DOI
36 Neut, D., Kluin, O.S., Crielaard, B.J., Van Der Mei, H.C., Busscher, H.J. and Grijpma, D.W. (2009), "A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis", Acta Orthop., 80(5), 514-519. https://doi.org/10.3109/17453670903350040.   DOI
37 Ozdil, D. and Aydin, H.M. (2014), "Polymers for medical and tissue engineering applications", J. Chem. Technol. Biotechnol., 89(12), 1793-1810. https://doi.org/10.1002/jctb.4505.   DOI
38 Palard, I., Schappacher, M., Belloncle, B., Soum, A. and Guillaume, S.M. (2007), "Unprecedented polymerization of trimethylene carbonate Initiated by a samarium borohydride complex: Mechanistic insights and copolymerization with ${\varepsilon}$-caprolactone", Chem. Eur. J., 13(5), 1511-1521. https://doi.org/10.1002/chem.200600843.   DOI
39 Park, K.I., Teng, Y.D. and Snyder, E.Y. (2002), "The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue", Nat. Biotechnol., 20(11), 1111-1117. https://doi.org/10.1038/nbt751.   DOI
40 Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2001), "Copolymers of trimethylene carbonate and ${\varepsilon}$- caprolactone for porous nerve guides: Synthesis and properties", J. Biomater. Sci., Polym. Ed., 12(1), 35-53. https://doi.org/10.1163/156856201744434.   DOI
41 Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2002), "In vitro degradation of trimethylene carbonate based (co)polymers", Macromol. Biosci., 2(9), 411-419. https://doi.org/10.1002/mabi.200290000.   DOI
42 Pego, A.P., Grijpma, D.W. and Feijen, J. (2003a), "Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks", Polymer, 44(21), 6495-6504. https://doi.org/10.1016/s0032-3861(03)00668-2.   DOI
43 Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003b), "Biodegradable elastomeric scaffolds for soft tissue engineering", J. Control. Release, 87(1-3), 69-79. https://doi.org/10.1016/S0168-3659(02)00351-6.   DOI
44 Pego, A.P., Van Luyn, M.J.A., Brouwer, L.A., Van Wachem, P.B., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003c), "In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or ${\varepsilon}$-caprolactone: Degradation and tissue response", J. Biomed. Mater. Res. Part A, 67(3), 1044-1054. https://doi.org/10.1002/jbm.a.10121.
45 Pires, L.R., Guarino, V., Oliveira, M.J., Ribeiro, C.C., Barbosa, M.A., Ambrosio, L. and Pego, A.P. (2013), "Ibuprofen-loaded poly(trimethylene carbonate-co-${\varepsilon}$-caprolactone) electrospun fibres for nerve regeneration", J. Tissue Eng. Regen. Med., 10(3), 154-166. https://doi.org/10.1002/term.1792.
46 Pires, L.R., Lopes, C.D.F., Salvador, D., Rocha, D.N. and Pego, A.P. (2017), "Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site", J. Mater. Sci. Mater. Med., 28(10), 157. https://doi.org/10.1007/s10856-017-5967-7.
47 Pitt, G.G., Gratzl, M.M., Kimmel, G.L., Surles, J. and Sohindler, A. (1981), "Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (${\varepsilon}$-caprolactone) and their copolymers in vivo", Biomaterials, 2(4), 215-220. https://doi.org/10.1016/0142-9612(81)90060-0.   DOI
48 Podual, K., Doyle, F.J. and Peppas, N.A. (1997), Glucose-Sensitive Cationic Hydrogels: Preparation, Characterization and Modeling of Swelling Properties, American Institute of Chemical Engineers, Washington, U.S.A.
49 Putnam, D., Gentry, C.A., Pack, D.W. and Langer, R. (2001), "Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini", Proc. Natl. Acad. Sci., 98(3), 1200-1205. https://doi.org/10.1073/pnas.98.3.1200.   DOI
50 R&M. (2018), Implantable biomaterials - Global market outlook (2017-2026), Research and Markets, Dublin 8, Ireland. https://www.researchandmarkets.com/reports/4613489/implantable-biomaterials-global-marketoutlook.
51 Rancourt, J. (2019), SGS Polymer solutions incorporated; SGS Polymer Solutions (SGS PSI), Christiansburg, VA 24073, U.S.A. https://www.polymersolutions.com.
52 Rebelo, R., Fernandes, M. and Fangueiro, R. (2017), "Biopolymers in medical implants: A brief review", Proc. Eng., 200, 236-243. https://doi.org/10.1016/j.proeng.2017.07.034.   DOI
53 Schappacher, M., Fabre, T., Mingotaud, A.F. and Soum, A. (2001), "Study of a (trimethylenecarbonate-co-${\varepsilon}$-caprolactone) polymer-part 1: Preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts", Biomaterials, 22(21), 2849-2855. https://doi.org/10.1016/S0142-9612(01)00029-1.   DOI
54 Rocha, D.N., Brites, P., Fonseca, C. and Pego, A.P. (2014), "Poly (trimethylene carbonate-co-${\varepsilon}$-caprolactone) promotes axonal growth", PLoS One, 9(2). https://doi.org/10.1371/journal.pone.0088593.
55 Rostami-Hodjegan, A. and Tucker, G.T. (2007), "Simulation and prediction of in vivo drug metabolism in human populations from in vitro data", Nat. Rev. Drug Discov., 6, 140-148. https://doi.org/10.1038/nrd2173.   DOI
56 Saman, R.A. and Iqbal, M. (2019), Nanotechnology-Based Drug Delivery Systems: Past, Present and Future, Springer, Kota Kinabalu, Malaysia.
57 Sigma, A. (2019), Product Specification: Poly(trimethylene carbonate-co-caprolactone); Sigma-Aldrich Co. https://www.sigmaaldrich.com.
58 Song, R., Murphy, M., Li, C., Ting, K., Soo, C. and Zheng, Z. (2018), "Current development of biodegradable polymeric materials for biomedical applications", Drug Des. Dev. Ther., 12, 3117-3145. https://doi.org/10.2147/DDDT.S165440.   DOI
59 Albertsson, A.C. and Eklund, M. (1994), "Synthesis of copolymers of 1, 3-dioxan-2-one and oxepan-2-one using coordination catalysts", J. Polym. Sci. Part A Polym. Chem., 32(2), 265-279. https://doi.org/10.1002/pola.1994.080320207.   DOI
60 Aguilar, Z.P. (2012), Nanomaterials for Medical Applications, Elsevier, Waltham, U.S.A.
61 Albertsson, A.C. and Eklund, M. (1995), "Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonateco-caprolactone) and poly(adipic anhydride)", J. Appl. Polym. Sci., 57(1), 87-103. https://doi.org/10.1002/app.1995.070570109.   DOI
62 Ali, S.A.M., Doherty, P.J. and Williams, D.F. (1993), "Mechanisms of polymer degradation in implantable devices. 2. poly (DL-lactic acid)", J. Biomed. Mater. Res., 27(11), 1409-1418. https://doi.org/10.1002/jbm.820271108.   DOI
63 Anderson, D.G., Lynn, D.M. and Langer, R. (2003), "Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery", Angew. Chem. Int. Ed., 42(27), 3153-3158. https://doi.org/10.1002/ange.200351244.   DOI
64 Barrera, D.A., Zylstra, E., Lansbury, P.T. and Langer, R. (1995), "Copolymerization and degradation of poly (lactic acid-co-lysine)", Macromolecules, 28(2), 425-432. https://doi.org/10.1021/ma00106a004.   DOI
65 Yang, L., Li, J., Li, M. and Gu, Z. (2016), "The in vitro and in vivo degradation of cross-linked poly(trimethylene carbonate)-based networks", Polymers (Basel), 8(4), 151. https://doi.org/10.3390/polym8040151.   DOI
66 Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S. and Kumbar, S.G. (2016), "Bioactive polymeric scaffolds for tissue engineering", Bioact. Mater., 1(2), 93-108. https://doi.org/10.1016/j.bioactmat.2016.11.001.   DOI
67 Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P. and Bannerjee, S.K. (2012), "Drug delivery systems: An updated review", Int. J. Pharm. Investig., 2(1), 2-11. https://doi.org/10.1016/10.4103/2230-973X.96920.   DOI
68 Ulery, B.D., Nair, L.S. and Laurencin, C.T. (2011), "Biomedical applications of biodegradable polymers", J. Polym. Sci. Part B Polym. Phys., 49(12), 832-864. https://doi.org/10.1002/polb.22259.
69 Vleggeert-Lankamp, C.L.A.M., Wolfs, J., Pego, A.P., van den Berg, R., Feirabend, H. and Lakke, E. (2008), "Effect of nerve graft porosity on the refractory period of regenerating nerve fibers", J. Neurosurg., 109(2), 294-305. https://doi.org/10.3171/jns/2008/109/8/0294.   DOI
70 Yang, L.Q., Yang, D., Guan, Y.M., Li, J.X. and Li, M. (2012), "Random copolymers based on trimethylene carbonate and ${\varepsilon}$-caprolactone for implant applications: Synthesis and properties", J. Appl. Polym. Sci., 124(5), 3714-3720. https://doi.org/10.1002/app.35355.   DOI
71 Yang, L., Li, J., Meng, S., Jin, Y., Zhang, J., Li, M., Guo, J. and Gu, Z. (2014), "The in vitro and in vivo degradation behavior of poly (trimethylene carbonate-co-${\varepsilon}$-caprolactone) implants", Polymer, 55(20), 5111-5124. https://doi.org/10.1016/J.POLYMER.2014.08.027.   DOI
72 Yannas, I.V., Burke, J.F., Orgill, D.P. and Skrabut, E.M. (1982), "Wound tissue can utilize a polymeric template to synthesize a functional extension of skin", Science, 215(4529), 174-176. https://doi.org/10.1126/science.7031899.   DOI