• 제목/요약/키워드: exact strip

검색결과 25건 처리시간 0.026초

熱平衡積分法에 의한 有限 Strip에서의 2次元 過渡熱傳導 問題의 解析 (Analysis of Two-Dimensional Transient Heat Conduction Problems in a Finite Strip by the Heat Balance Integral Method)

  • 서정일;조진호;조종철
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.417-424
    • /
    • 1983
  • This paper presents two methods of obtaining approximate analytic solutions for the temperature distributions and heat flow to two-dimensional transient heat conduction problems in a finite strip with constant thermal properties using the Heat Balance Integral. The methods introduced in this study are as follows; one using the Heat Balance Integral only, and the other successively using the Heat Balance Integral and an exact analytic method. Both methods are applicable to a large number of the two-dimensional unsteady conduction problems in finite regions such as extended surfaces with uniform thickness, but in this paper only solutions for the unsteady problems in a finite strip with boundary condition at the base expressed in terms of step function are provided as an illustration. Results obtained by both methods are compared with those by the exact two-dimensional transient analysis. It is found that both approximate methods generate small time solutions, which can not be obtained easily by any exact analytic method for small values of Fourier numbers. In the case of applying the successive use of the Heat Balance Integral and Laplace transforms, the analysis shows good agreement with the exact solutions for any Fourier number in the range of Biot numbers less than 0.5.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

The exact bearing capacity of strip footings on reinforced slopes using slip line method

  • Majd Tarrafa;Ehsan Seyedi Hosseininia
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.261-273
    • /
    • 2024
  • This study presents a groundbreaking analytical approach to find an exact solution for the bearing capacity of strip footings on reinforced slopes, utilizing the two-phase approach and slip line method. The two-phase approach is considered as a generalized homogenization technique. The slip line method is leveraged to derive the stress field as a lower bound solution and the velocity field as an upper bound solution, thereby facilitating the attainment of an exact solution. The key finding points out the variation of the bearing capacity factor Nγ with influencing factors including the backfill soil friction angle, the footing setback distance from the slope crest edge, slope angle, strength, and volumetric fraction of inclusion layers. The results are evaluated by comparing them with those of relevant studies in the literature considering analytical and experimental studies. Through the application of the two-phase approach, it becomes feasible to determine the tensile loads mobilized along the inclusion layers associated with the failure zone. It is attempted to demonstrate the results by utilizing non-dimensional graphs to clearly illustrate variable impacts on reinforced soil stability. This research contributes significantly to advancing geotechnical engineering practices, specifically in the realm of static design considerations for reinforced soil structures.

균일단면 선박의 유탄성 수평응답에 대한 해석해 (Exact Solution on the Anti-symmetric Responses of Ships having Uniform Sectional Properties with Hydro-elasticity)

  • 정종진;박인규
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.45-52
    • /
    • 2004
  • Exact solution on the anti-symmetric response of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Horizontal bending moment, shear force and torsional moment are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected

균일단면 선박의 유탄성 수직응답에 대한 해석해 (Exact Solution on the Vertical Hydro-elastic Responses of Ships having Uniform Sectional Properties)

  • 박인규;정종진
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.47-54
    • /
    • 2004
  • Exact solution on the vertical responses of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Vertical bending moment, shear force and deflection are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected.

On Developing an Intelligent Neuro-Fuzzy Control System for Strip Caster System

  • Yon, Jung-Heum;Won, Kyoung-Jae;Jeon, Hong-Tae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.443-448
    • /
    • 1998
  • As the strip caster system that produces a regular steel plate can be considered as a complicate nonlinear multi-variable system, it is not easy to obtain an effective control system. One way to overcome the difficulties is to apply the intelligent neuro-fuzzy fusion approach in developing the control scheme. The neuro-fuzzy control scheme possesses several distinct advantages, including the fact that it doesn't need the exact mathematical modeling of controlled plant and can provided some robustness in the control scheme. In this paper, an intelligent neuro-fuzzy for the stripe caster system will be proposed. The effectiveness of the proposed scheme will be demonstrated by computer simulation.

  • PDF

컴퓨터 비젼 시스템을 이용한 알루미늄표면 검사 알고리즘 개발 (Used the Computer Vision System Develop of Algorithm for Aluminium Mill Strip Defect Inspection)

  • 이용중
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.115-120
    • /
    • 2000
  • This study is on the application the image processing algorithm for inspection of the aluminium mill strip surface defect. The image of surface defect data was obtained using the CCD camera with the digital signal board. The edge was found from the difference of pixel intensity between the normal image and defect image. Two step were taken to find the edge in the image processing algorithm. First, noise was removed by using the median filter in the image. Second, the edge was sharpened in detail by using the sharpening convolution filter in the image. Canny algorithm was used to defect the exact edge. The defect section was separated from the original image is to find the coordination point p1 and p2 which include the defect image

  • PDF

고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측 (Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling)

  • 송길호;정제숙
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.271-277
    • /
    • 2013
  • 냉간압연 및 소둔공정에서의 조질압연 과정은 강종별로 적정 연신율을 부여함으로서 프레스 가공시 항복점 연신 현상을 제거해주는 중요한 공정이다. 적정 연신율 확보를 위해서는 강종별, 사이즈별 정확한 압연하중 예측이 필수이다. 열간 및 냉간압연과는 달리 조질압연에서는 2%이내의 연신율을 부과하는 공정이므로 압연하중 작용 시 롤 바이트 내 에서의 롤의 탄성변형 거동이 복잡하여 정확한 압연하중을 예측하기가 어려워 예측모델이 정립되어 있지 않다. 그럼에도 불구하고 최근 인장강도 590MPa 급 이상의 자동차용 고강도강 개발이 가속화 됨에 따라 조질압연시 정확한 압연하중의 예측은 더욱더 중요하게 되었다. 따라서 본 연구에서는 조질 압연 시 롤 바이트 내에서 롤의 변형거동이 유사하다고 알려져 있는 호일(foil)압연 이론 식을 이용해 조질 압연 시 전체 생산 강종을 대상으로 압연하중 예측 가능성에 대해 검토하였다. 그 결과 인장강도 350MPa 이상 980MPa 이하의 강종에 대해서는 non circular model 이 circular 모델보다 압연하중 예측 정도가 우수하며, 이 영역에서 압연하중 예측 모델로의 적용이 가능함을 확인하였다.