• Title/Summary/Keyword: exact sequence

Search Result 188, Processing Time 0.03 seconds

PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID

  • Cho, Eunha;Jeong, Jinsun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • Let M be a left R-module and R be a ring with unity, and $S=\{0,2,3,4,{\ldots}\}$ be a submonoid. Then $M[x^{-s}]=\{a_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ is an $R[x^s]$-module. In this paper we show some properties of $M[x^{-s}]$ as an $R[x^s]$-module. Let $f:M{\rightarrow}N$ be an R-linear map and $\overline{M}[x^{-s}]=\{a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}a_i{\in}M\}$ and define $N+\overline{M}[x^{-s}]=\{b_0+a_2x^{-2}+a_3x^{-3}+{\cdots}+a_nx^{-n}{\mid}b_0{\in}N,\;a_i{\in}M}$. Then $N+\overline{M}[x^{-s}]$ is an $R[x^s]$-module. We show that given a short exact sequence $0{\rightarrow}L{\rightarrow}M{\rightarrow}N{\rightarrow}0$ of R-modules, $0{\rightarrow}L{\rightarrow}M[x^{-s}]{\rightarrow}N+\overline{M}[x^{-s}]{\rightarrow}0$ is a short exact sequence of $R[x^s]$-module. Then we show $E_1+\overline{E_0}[x^{-s}]$ is not an injective left $R[x^s]$-module, in general.

Bridging a Gap between DNA sequences and expression patterns of genes

  • Morishita, Shinichi
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.69-70
    • /
    • 2000
  • The completion of sequencing human genome would motivate us to map millions of human cDNAs onto the unique ruler "genome sequence", in order to identify the exact address of each cDNA together with its exons, its promoter region, and its alternative splicing patterns. The expression patterns of some cDNAs could therefore be associated with these precise gene addresses, which further accelerate studies on mining correlations between motifs of promoters and expressions of genes in tissues. Towards the realization of this goal, we have developed a time-and-space efficient software named SQUALL that is able to map one cDNA sequence of length a few thousand onto a long genome sequence of length thirty million in a couple of minutes on average. Using SQUALL, we have mapped twenty thousand of our Bodymap (http://bodymap.ims.u-tokyo.ac.jp) cDNAs onto the genome sequences of Chr.21st and 22nd. In this talk, I will report the status of this ongoing project.

  • PDF

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.

An Efficient DNA Sequence Compression using Small Sequence Pattern Matching

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.281-287
    • /
    • 2021
  • Bioinformatics is formed with a blend of biology and informatics technologies and it employs the statistical methods and approaches for attending the concerning issues in the domains of nutrition, medical research and towards reviewing the living environment. The ceaseless growth of DNA sequencing technologies has resulted in the production of voluminous genomic data especially the DNA sequences thus calling out for increased storage and bandwidth. As of now, the bioinformatics confronts the major hurdle of management, interpretation and accurately preserving of this hefty information. Compression tends to be a beacon of hope towards resolving the aforementioned issues. Keeping the storage efficiently, a methodology has been recommended which for attending the same. In addition, there is introduction of a competent algorithm that aids in exact matching of small pattern. The DNA representation sequence is then implemented subsequently for determining 2 bases to 6 bases matching with the remaining input sequence. This process involves transforming of DNA sequence into an ASCII symbols in the first level and compress by using LZ77 compression method in the second level and after that form the grid variables with size 3 to hold the 100 characters. In the third level of compression, the compressed output is in the grid variables. Hence, the proposed algorithm S_Pattern DNA gives an average better compression ratio of 93% when compared to the existing compression algorithms for the datasets from the UCI repository.

A DNA Index Structure using Frequency and Position Information of Genetic Alphabet (염기문자의 빈도와 위치정보를 이용한 DNA 인덱스구조)

  • Kim Woo-Cheol;Park Sang-Hyun;Won Jung-Im;Kim Sang-Wook;Yoon Jee-Hee
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.263-275
    • /
    • 2005
  • In a large DNA database, indexing techniques are widely used for rapid approximate sequence searching. However, most indexing techniques require a space larger than original databases, and also suffer from difficulties in seamless integration with DBMS. In this paper, we suggest a space-efficient and disk-based indexing and query processing algorithm for approximate DNA sequence searching, specially exact match queries, wildcard match queries, and k-mismatch queries. Our indexing method places a sliding window at every possible location of a DNA sequence and extracts its signature by considering the occurrence frequency of each nucleotide. It then stores a set of signatures using a multi-dimensional index, such as R*-tree. Especially, by assigning a weight to each position of a window, it prevents signatures from being concentrated around a few spots in index space. Our query processing algorithm converts a query sequence into a multi-dimensional rectangle and searches the index for the signatures overlapped with the rectangle. The experiments with real biological data sets revealed that the proposed method is at least three times, twice, and several orders of magnitude faster than the suffix-tree-based method in exact match, wildcard match, and k- mismatch, respectively.

Automatic Conversion of English Pronunciation Using Sequence-to-Sequence Model (Sequence-to-Sequence Model을 이용한 영어 발음 기호 자동 변환)

  • Lee, Kong Joo;Choi, Yong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.5
    • /
    • pp.267-278
    • /
    • 2017
  • As the same letter can be pronounced differently depending on word contexts, one should refer to a lexicon in order to pronounce a word correctly. Phonetic alphabets that lexicons adopt as well as pronunciations that lexicons describe for the same word can be different from lexicon to lexicon. In this paper, we use a sequence-to-sequence model that is widely used in deep learning research area in order to convert automatically from one pronunciation to another. The 12 seq2seq models are implemented based on pronunciation training data collected from 4 different lexicons. The exact accuracy of the models ranges from 74.5% to 89.6%. The aim of this study is the following two things. One is to comprehend a property of phonetic alphabets and pronunciations used in various lexicons. The other is to understand characteristics of seq2seq models by analyzing an error.

A Research on Motion Graphic by Opening Title Sequence of Korea Movie (한국영화 오프닝타이틀 시퀀스를 통한 모션그래픽에 관한 연구)

  • Choi, Ji-Hye;Kim, Chee-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.618-625
    • /
    • 2010
  • Receiving information and transmitting it is the most basic and important thing in numan society. And modern communication is not only transmitting objective information but also a visual communication which shows feeling of each emotions and image-motive. Introduction of Motion graphic which was grown by new media changed opening title sequence to a more expanded genre. The purpose of this research is to announce the new value of opening title sequence. Motion graphic will be used continually as an important way to communicate and also a guideline which could transmit exact informations and emotions to viewers with creative expressions.

AllEC: An Implementation of Application for EC Numbers Prediction based on AEC Algorithm

  • Park, Juyeon;Park, Mingyu;Han, Sora;Kim, Jeongdong;Oh, Taejin;Lee, Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-212
    • /
    • 2022
  • With the development of sequencing technology, there is a need for technology to predict the function of the protein sequence. Enzyme Commission (EC) numbers are becoming markers that distinguish the function of the sequence. In particular, many researchers are researching various methods of predicting the EC numbers of protein sequences based on deep learning. However, as studies using various methods exist, a problem arises, in which the exact prediction result of the sequence is unknown. To solve this problem, this paper proposes an All Enzyme Commission (AEC) algorithm. The proposed AEC is an algorithm that executes various prediction methods and integrates the results when predicting sequences. This algorithm uses duplicates to give more weights when duplicate values are obtained from multiple methods. The largest value, among the final prediction result values for each method to which the weight is applied, is the final prediction result. Moreover, for the convenience of researchers, the proposed algorithm is provided through the AllEC web services. They can use the algorithms regardless of the operating systems, installation, or operating environment.

A DNA Sequence Alignment Algorithm Using Quality Information and a Fuzzy Inference Method (품질 정보와 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.55-68
    • /
    • 2007
  • DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods. In this paper, we proposed a DNA sequence alignment algorithm utilizing quality information and a fuzzy inference method utilizing characteristics of DNA sequence fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods using DNA sequence quality information. In conventional algorithms, DNA sequence alignment scores were calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch applying quality information of each DNA fragment. However, there may be errors in the process for calculating DNA sequence alignment scores in case of low quality of DNA fragment tips, because overall DNA sequence quality information are used. In the proposed method, exact DNA sequence alignment can be achieved in spite of low quality of DNA fragment tips by improvement of conventional algorithms using quality information. And also, mapping score parameters used to calculate DNA sequence alignment scores, are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments. From the experiments by applying real genome data of NCBI (National Center for Biotechnology Information), we could see that the proposed method was more efficient than conventional algorithms using quality information in DNA sequence alignment.

  • PDF

Acquisition of PN sequence by neural netowrks in direct-sequence spread-spectrum systems (신경망을 이용한 DS/SS 시스템의 PN 코드의 초기 동기)

  • 이상목;유철우;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.44-54
    • /
    • 1996
  • In DS/SS systems it is necessary to synchronize the locally generated despreading signal with the received spreading signal to demodulate the received signal. The synch process between the two signals is usually accomplished in two steps : first acquisition then tracking. In this paper, an acquisition system aided by the neural network is proposed for the rapid and exact acquisition in DS/SS. the neural netowrk is composed o fthree-layered perpecptrons and trained by the backpropagation algorithm. The performance of the proposed system is analyzed and compared with ones of conventional systems using the sequential estimation technique under an additive while gaussian noisy channel. In all of th econsidered simulations, the proposed system outperforms conventional systems.

  • PDF