• 제목/요약/키워드: evolutionary robotics

검색결과 112건 처리시간 0.029초

기생적 공진화 알고리즘을 이용한 퍼지 제어기 설계 (Design of Fuzzy Controller Using Parasitic Co-evolutionary Algorithm)

  • 심귀보;변광섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1071-1076
    • /
    • 2004
  • It is a fuzzy controller that it is the most used method in the control of non-linear system. The most important part in the fuzzy controller is a design of fuzzy rules. Many algorithm that design fuzzy rules have proposed. And attention to the evolutionary computation is increasing in the recent days. Among them, the co-evolutionary algorithm is used in the design of optimal fuzzy rule. This paper takes advantage of a schema co-evolutionary algorithm. In order to verify the efficiency of the schema co-evolutionary algorithm, a fuzzy controller for the mobile robot control is designed by the schema co-evolutionary algorithm and it is compared with other parasitic co-evolutionary algorithm such as a virus-evolutionary genetic algorithm and a co-evolutionary method of Handa.

진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구 (A Study on an Artificial Neural Network Design using Evolutionary Programming)

  • 강신준;고택범;우천희;이덕규;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

The Co-Evolutionary Algorithms and Intelligent Systems

  • June, Chung-Young;Byung, Jun-Hyo;Bo, Sim-Kwee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.553-559
    • /
    • 1998
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA goes well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in some problems. In designing intelligent systems, specially, since there is no deterministic solution, a heuristic trial-and error procedure is usually used to determine the systems' parameters. As an alternative scheme, therefore, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we review the existing co-evolutionary algorithms and propose co-evolutionary schemes designing intelligent systems according to the relation between the system's components.

  • PDF

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

이동 로봇 행위의 진화 (Evolutionary Learning of Mobile Robot Behaviors)

  • 이재구;심인보;윤중선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1105-1108
    • /
    • 2003
  • Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy, which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors.

  • PDF

이동 로봇 행위의 실시간 진화 (Realtime Evolutionary Learning of Mobile Robot Behaviors)

  • 이재구;심인보;윤중선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF

적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계 (A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms)

  • 원태현;황기현;박준호;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF

Co-Evolutionary Algorithm for the Intelligent System

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1013-1016
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we propose an extended schema theorem associated with a schema co-evolutionary algorithm(SCEA), which explains why the co-evolutionary algorithm works better than SGA. The experimental results show that the SCEA works well in optimization problems including deceptive functions.

  • PDF

공진화에 있어서 스키마 해석 (Schema Analysis on Co-Evolutionary Algorithm)

  • Byung, Jun-Hyo;Sim, Kwee-Bo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.77-80
    • /
    • 1998
  • The theoretical foundations of simple genetic algorithm(SGA) are the Schema Theorem and the Building Block Hypothesis. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and cooperate each other. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. Also the experimental results show a co-evolutionary algorithm works well in optimization problems.

  • PDF