• 제목/요약/키워드: evolution optimization

검색결과 404건 처리시간 0.029초

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰 (Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.549-557
    • /
    • 2014
  • 근래에 게임이론 분야에서 진화계산법을 사용한 교섭게임 분석은 중요한 이슈 중에 하나이다. 본 논문에서는 이질적인 두 인공 에이전트 간의 공진화를 활용하여 교섭게임을 관찰한다. 두 인공 에이전트를 모델링하기 위해 사용된 전략은 진화전략의 종류인 입자군집최적화와 차분진화알고리즘이다. 교섭게임에서 각 전략이 최선의 결과를 얻기 위한 알고리즘 모수들을 조사하고 두 전략의 공진화를 관찰하여 어느 알고리즘이 교섭게임에 더 우수한지 관찰한다. 컴퓨터 시뮬레이션 실험 결과 입자군집최적화 전략이 차분진화알고리즘 전략보다 교섭게임에서 더 우수한 성능을 보임을 확인하였다.

Cooperative Coevolution Differential Evolution Based on Spark for Large-Scale Optimization Problems

  • Tan, Xujie;Lee, Hyun-Ae;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.155-160
    • /
    • 2021
  • Differential evolution is an efficient algorithm for solving continuous optimization problems. However, its performance deteriorates rapidly, and the runtime increases exponentially when differential evolution is applied for solving large-scale optimization problems. Hence, a novel cooperative coevolution differential evolution based on Spark (known as SparkDECC) is proposed. The divide-and-conquer strategy is used in SparkDECC. First, the large-scale problem is decomposed into several low-dimensional subproblems using the random grouping strategy. Subsequently, each subproblem can be addressed in a parallel manner by exploiting the parallel computation capability of the resilient distributed datasets model in Spark. Finally, the optimal solution of the entire problem is obtained using the cooperation mechanism. The experimental results on 13 high-benchmark functions show that the new algorithm performs well in terms of speedup and scalability. The effectiveness and applicability of the proposed algorithm are verified.

차분진화 알고리듬을 이용한 전역최적화 (Global Optimization Using Differential Evolution Algorithm)

  • 정재준;이태희
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1809-1814
    • /
    • 2003
  • Differential evolution (DE) algorithm is presented and applied to global optimization in this research. DE suggested initially fur the solution to Chebychev polynomial fitting problem is similar to genetic algorithm(GA) including crossover, mutation and selection process. However, differential evolution algorithm is simpler than GA because it uses a vector concept in populating process. And DE turns out to be converged faster than CA, since it employs the difference information as pseudo-sensitivity In this paper, a trial vector and its control parameters of DE are examined and unconstrained optimization problems of highly nonlinear multimodal functions are demonstrated. To illustrate the efficiency of DE, convergence rates and robustness of global optimization algorithms are compared with those of simple GA.

부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경 (Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique)

  • 이준호;정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Fast Optimization by Queen-bee Evolution and Derivative Evaluation in Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.310-315
    • /
    • 2005
  • This paper proposes a fast optimization method by combining queen-bee evolution and derivative evaluation in genetic algorithms. These two operations make it possible for genetic algorithms to focus on highly fitted individuals and rapidly evolved individuals, respectively. Even though the two operations can also increase the probability that genetic algorithms fall into premature convergence phenomenon, that can be controlled by strong mutation rates. That is, the two operations and the strong mutation strengthen exploitation and exploration of the genetic algorithms, respectively. As a result, the genetic algorithm employing queen-bee evolution and derivative evaluation finds optimum solutions more quickly than those employing one of them. This was proved by experiments with one pattern matching problem and two function optimization problems.

Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)

  • Seyedpoor, Seyed Mohammad;Norouzi, Eshagh;Ghasemi, Sara
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.235-248
    • /
    • 2018
  • An efficient method utilizing the multi-stage improved differential evolution algorithm (MSIDEA) as an optimization solver is presented here to detect the multiple-damage of structural systems. Natural frequency changes of a structure are considered as a criterion for damage occurrence. The structural damage detection problem is first transmuted into a standard optimization problem dealing with continuous variables, and then the MSIDEA is utilized to solve the optimization problem for finding the site and severity of structural damage. In order to assess the performance of the proposed method for damage identification, an experimental study and two numerical examples with considering measurement noise are considered. All the results demonstrate the effectiveness of the proposed method for accurately determining the site and severity of multiple-damage. Also, the performance of the MSIDEA for damage detection compared to the standard differential evolution algorithm (DEA) is confirmed by test examples.

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

New Boundary-Handling Techniques for Evolution Strategies

  • Park, Han-Lim;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.165.1-165
    • /
    • 2001
  • The evolution strategy is a good evolutionary algorithm to find the global optimum of a real-valued function. Since many engineering problems can be formulated as real valued function optimization, the evolution strategy is frequently employed in engineering fields. However, in many engineering optimization problems, an optimization parameter is often restricted in the bounded region between two specified values, the minimum and the maximum limit, respectively. Since an offspring individual is generated randomly around a parent individual during mutation process of the evolution strategy, an individual outside the search region can be generated even if the parent is inside the search region. This paper proposes two new boundary-handling techniques for evolution strategies. One is the ...

  • PDF

대규모 협동진화 차등진화 (Large Scale Cooperative Coevolution Differential Evolution)

  • 신성윤;탄쉬지에;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.665-666
    • /
    • 2022
  • 미분 진화는 연속 최적화 문제에 대한 효율적인 알고리즘이다. 그러나 대규모 최적화 문제를 해결하기 위해 미분 진화를 적용하면 성능이 빠르게 저하되고 런타임이 기하급수적으로 증가한다. 이 문제를 극복하기 위해 Spark(SparkDECC라고 함)를 기반으로 하는 새로운 협력 공진화 미분 진화를 제안한다. 분할 정복 전략은 SparkDECC에서 사용된다.

  • PDF