• Title/Summary/Keyword: evolution dynamics

Search Result 289, Processing Time 0.023 seconds

Understanding the Plasticity of Amorphous Alloys Via the Interpretation of Structural Evolution Inside a Shear Band (비정질 합금의 전단띠 내부 구조변화 해석을 통한 소성의 이해)

  • Lee, Chang-Myeon;Park, Kyoung-Won;Lee, Byeong-Joo;Shim, Jae-Hyeok;Lee, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.276-280
    • /
    • 2009
  • The effect of the initial packing structure on the plasticity of amorphous alloys was investigated by tracing the structural evolution of the amorphous solid inside a shear band. According to the molecular dynamics simulations, the structural evolution of the amorphous solids inside the shear band was more abrupt in the alloy with a higher initial packing density. Such a difference in the structural evolution within the shear band observed from the amorphous alloys with different initial packing density is believed to cause different degrees of shear localization, providing an answer to the fundamental question of why amorphous alloys show different plasticity. We clarify the structural origin of the plasticity of bulk amorphous alloys by exploring the microstructural aspects in view of the structural disordering, disorder-induced softening, and shear localization using molecular dynamics simulations based on the recently developed MEAM (modified embedded atom method) potential.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model (이온유체방정식을 이용한 Plasma Sheath 시변 해석)

  • Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

An Analysis of the Dynamics of the Capitalism's Evolution with Systems Thinking (시스템사고를 통한 자본주의 진화과정의 동태성 분석)

  • Choi, Nam-Hee
    • Korean System Dynamics Review
    • /
    • v.15 no.4
    • /
    • pp.101-127
    • /
    • 2014
  • This study aims to understand how and why each stage of capitalism grows and changes into the new direction in the moment of crisis, based on the systems thinking approach through the causal loop feedback structure. To achieve the research purpose, it classifies the evolution process of the capitalistic economic system into 4 types: Capitalism 1.0(Classical Laissez-Faire Capitalism), 2.0(Revised Capitalism), 3.0(Neo-liberalism), and 4.0(New Capitalism for the Future). This study focuses particularly on by which feedback structure the growth, crisis, and new transition of capitalism could be explained. The main research results are as follows. The intended positive feedback structure caused the growth at each early stage of capitalism. After that time, as a result of the uncontrolled growth, the negative feedback structure controlling its growth operated on the one hand, while the positive feedback structure amplifying the crisis did on the other hand. The study suggests the Resilient Capitalism as the new evolutional direction of Capitalism 4.0. It can contribute to strengthening its resilience by which all the economic players can recover promptly and flexibly from the crises such as the failure of competition and unemployment.

  • PDF

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

The evolution of radiation-induced point defects near symmetrical tilt Σ5 (310) <001> grain boundary in pure δ-plutonium: A molecular dynamics study

  • Wang, Yangzhong;Liu, Wenbo;Zhang, Jiahui;Yun, Di;Chen, Piheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1587-1592
    • /
    • 2021
  • The effects of the symmetrical tilt Σ5 (310) <001> grain boundary (GB) on the evolution of radiation-induced point defects in pure δ-plutonium (Pu) were studied by Molecular dynamics (MD) simulations. The evolution of radiation-induced point defects was obtained when primary knock-on atom (PKA) was respectively set as -15 Å and 15 Å far from the GB and the number of residual defects was obtained as the distance from PKA to GB was changed. According to the results, compared with vacancies, interstitial atoms were more easily absorbed by GB. In addition, the formation energy of point defects was also calculated. The results showed that there was almost no difference for the formation energy of vacancies in the all matrix. However, the formation energy of interstitial atoms close to the GB was lower than that in the other bulk regions.

A System Simulation for Investigation of IT and Society Co-evolution Dynamics and Its Policy Implications (시스템 시뮬레이션을 통한 기술과 사회 공진화의 동태성 고찰)

  • Kim, Sang-Wook;Jung, Jae-Lim
    • Korean System Dynamics Review
    • /
    • v.9 no.1
    • /
    • pp.171-197
    • /
    • 2008
  • By applying Systems Simulation technique, this paper aims to investigates the dynamics underlying the coevolution of IT(information technology) and the society. Particularly, a series of basic questions are explored to answer by developing a simulation model for the mechanisms underlying the 'hype curve' ever occurring in the course of technology diffusion into society: First, why hype curve appears in the process of technology and society coevolution. Second, how to enhance the tapering level at the final stage of coevolution. Third, what are the key policy leverages and when is the right time for the policy intervention. As now, inflated expectations regarding ubiquitous information technology (u-IT) are growing very fast and higher than those for the previous technologies, which would result in overshoot followed by collapse of visibility and thus incur tremendous amount of social costs. In this regard implications drawn from this study perhaps give some insights not necessarily to the academics but also to the practitioners and policy makers facing the advent of u-IT as a new emerging horizon of information society.

  • PDF

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.

Researches in 1900's on cooperative population dynamics (협력형 개체 수 동역학에 대한 1900년대 연구)

  • Chang, Jeongwook;Shim, Seong-A
    • Journal for History of Mathematics
    • /
    • v.33 no.3
    • /
    • pp.167-177
    • /
    • 2020
  • Cooperative behavior may seem contrary to the notion of natural selection and adaptation, but is widely observed in nature, from the genetic level to the organism. The origin and persistence of cooperative behavior has long been a mystery to scientists studying evolution and ecology. One of the important research topics in the field of evolutionary ecology and behavioral ecology is to find out why cooperation is maintained over time. In this paper we take a historical overview of mathematical models representing cooperative relationships from the perspective of mathematical biology, which studies population dynamics between interacting biological groups, and analyze the mathematical characteristics and meanings of these cooperative models.