• Title/Summary/Keyword: evaporation method

Search Result 1,102, Processing Time 0.027 seconds

A Control of Pretilt Angles for Homeotropic Aligned NLC on the SiOx Thin Film Surface by Electron Beam Evaporation

  • Kang, Hyung-Ku;Han, Jin-Woo;Kang, Soo-Hee;Kim, Jong-Hwan;Kim, Oung-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.272-275
    • /
    • 2005
  • We studied the control of pretilt angles for homeotropic aligned nematic liquid crystal (NLC) on SiOx thin film surface by $45^{\circ}$ evaporation method with electron beam system. The uniform vertical LC alignment on. the SiOx thin film surfaces with electron beam evaporation was achieved. It is considered that the LC alignment on SiOx thin film by $45^{\circ}$ electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the SiOx thin film surface created by evaporation. The pretilt angles of about $3.5^{\circ}$ in aligned NLC on SiOx thin film surfaces by electron beam evaporation of $45^{\circ}$ were measured. Consequently, the high pretilt angles of the NLC on the SiOx thin film by $45^{\circ}$ oblique electron beam evaporation method can be achieved.

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery (침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성)

  • Kim, Guk-Tae;Yoon, Duck-Ki;Shim, Young-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method (다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석)

  • ;;Yun, In-Chul;Yoo, Je-In
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

A Study on the Nano Alloy Powders Synthesized by Simultaneous Pulsed Wire Evaporation (S-PWE) Method, Part I - Background (동시 전기 폭발법에 의한 나노 합금 분말 제조에 관한 연구 Part I - 동시 전기 폭발을 위한 이론적 배경)

  • ;;;O. M. Samatov;Yu. A. Kotov
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.60-68
    • /
    • 2004
  • Pulsed wire evaporation (PWE) method is known as the promising production-technique for nanopowders. In this study, we developed and modified the previous single wire explosion equipment to the simultaneous two-wire explosion one for the fabrication of alloy or mixture of nano metallic powder. First of all, both the theoretical and empirical background of pulsed wire explosion of single wire were summarized, and compared with our experimental results for Cu and Al single wlre explosion. After then, the simultaneous wire evaporation equipment was designed, constructed, and tested. The current and voltage behavior were well matched between the calculated ones from the circuit equations, and the experimental results from simultaneous explosion of Cu and Al wire.

Study on the dyestuff for acceration solar evaporation (함수의 천일증발촉진성 색소에 관한 시험)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.26-34
    • /
    • 1957
  • The solar evaporation method is one of the most important and popular salt manufecturing method in Korea. The rate of evaporation of sea water depends on a complex climate factors. Of these factors, the most important is solar radiation and in particular the extent to which it is absorbed in the brine. By the addition of suitable dyestuff, a further increase in absorption is obtained and can result in all the radiation entering the brine being made available as heat. "Solivap Green", one of several dyestuffs which have been suggested for accelerating solar evaporation, was tested in this experiment. The results of the experiment. 1. Increase the evaporation rate of brine up to 20-25%. 2. Elevate the temperature of brine 2-$4^{\circ}C$. higher than that of brine adding no dyestuff. 3. Optimum dyestuff concentration is 25-30 mg/L and allowable maximum concentration can not exceeded 1000 mg/$m^2$ (50 mg/L). 4. Addition of dyestuff does not cause the degradation of salt produced. 5. A conversion table which indicates the concentrations for various depths of brine was prepared for engineering purpose. 6. Absorption spectrum of the dyestuff was studies, but toxicological and structural studies for the dyestuff have not been done in this experiment.

  • PDF

Study on Optimization of the Vacuum Evaporation Process for OLED (Organic Electro-luminescent Emitting Display) (유기EL 디스플레이의 진공 성막 공정의 최적화에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • In OLED vacuum evaporation process, the essential requirements include good uniformity of the film thickness over a glass substrate. And, it is commercially significant to improve the consuming efficiency of material of the evaporant which is deposited on the substrate because of high price of organic materials. In this paper, to achieve the better thickness uniformity and the better organic material consuming rate, a process optimization algorithm was developed by understanding vacuum evaporation process parameters that affect the material consuming efficiency and the uniformity of film thickness. Based on the method developed in this study, the vacuum evaporation process of OLED was successfully controlled. The developed method allowed the manufacture of high quality OLED displays with cheaper fabrication cost.

  • PDF

Studies on Dissolution of Fentiazac from ${\beta}-Cyclodextrin$ Inclusion Complex (${\beta}$-씨클로덱스트린 포접화합물로부터 펜티아작의 용출)

  • Yoon, Hyung-Joong;Back, Un-Bong;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 1990
  • To increase the solubility of fentiazac which is used widely as a non-steroidal antiinflammatory drug, its inclusion complex and suppositories were prepared and studied. Inclusion complexes of fentiazac with ${\beta}-cyclodertin$ $({\beta}-CyD)$ were prepared by four diffrent methods; coprecipitation method, kneading method, solvent evaporation method, freeze drying method. Suppositories of $fentiazac/{\beta}-CyD$ with PEG 1500 and Witepsol H-15 were prepared by solvent evaporation method and freeze drying method. Inclusion complex formation of fentiazac with ${\beta}-CyD$ was ascertained by powder X-ray diffractometry, differential scanning calorimetry and IR spectroscopy. The dissolution rate of fentiazac from the inclusion complex increased in distilled water and KP 2nd disintegration test fluids (pH 6.8) but extemly decreased in KP 1st disintegration test fluid (pH 1.2). Inclusion complexes prepared by freeze drying method and solvent evaporation method were similar. Freeze drying method seemed to be suitable for preparation of complex with most higher dissolution rate but coprecipitation method seemed not to be suitable. The dissolution rate of fentiazac increased markedly by ${\beta}-CyD$ complexation. The release rates of suppositories increased in the following order. Complex prepared by freeze dying method in PEG 1500 > complex prepared by solvent evaporation method in PEG 1500 > fentiazac in PEG 1500 > complex prepared by freeze dying method in Witepsol H-15 > complex prepared by solvent evaporation method in Witepsol H-15 > fentiazac in Witepsol H-15.

  • PDF

Alignment Effect of a Nematic Liquid Crystal on Deposited SiOx Thin-Film Surface with e-beam Evaporation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • We have studied liquid crystal (LC) aligning capabilities for homeotropic alignment and the control of tilt angles on the $SiO_{x}$ thin film by electron beam evaporation method. A high tilt angle of about $86.5^{\circ}$ was obtained, and also the suitable tilt angle of the NLC on the $SiO_{x}$ thin film at $20{\sim}50\;nm$ thickness with e-beam evaporation can be achieved. The uniform LC alignment on the $SiO_{x}$ thin film surfaces with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $SiO_{x}$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $SiO_{x}$ thin film surface created by evaporation.