• 제목/요약/키워드: evaporation loss

검색결과 162건 처리시간 0.035초

수중 방사능 측정시 이온교환농축법과 증발건조법의 비교 (Comparison of the Ion-exchange Method and Evaporation Method for the Detection of Radioactivity in Water)

  • 지평국;박종묵;노성기
    • Journal of Radiation Protection and Research
    • /
    • 제13권2호
    • /
    • pp.52-56
    • /
    • 1988
  • 수중의 방사능을 측정하기 위한 전처리과정으로서 이온교환농축법과 증발건조법을 서로 비교하였다. 시료를 증발건조법으로 처리하였을때 방사성물질의 손실율은 이온교환농축법에 비해 20% 정도 많았다. 또, 1리터의 시료를 처리하는 데 소요된 증발시간은 $70^{\circ}C$에서 증발시킨 경우 약20시간이었으나 이온교환농축법으로 같은 양의 시료를 처리하는데 소요된 시간은 약6시간이었다. 따라서 이온교환농축법이 증발건조법에 비해 효과적이며 특히 수중의 저준위 방사성물질 측정에 적합한 것으로 나타났다.

  • PDF

다층단열재와 증기냉각쉴드를 사용한 액체수소 저장용기의 열해석 (Thermal Analysis of a Liquid Hydrogen Vessel with Multi-Layer-Insulation and Vapor-Cooled Shield)

  • 정일권;강병하
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.284-289
    • /
    • 2005
  • Thermal analysis of cryogenic-capable vessels with insulations have been carried out to store liquid hydrogen($LH_2$). The combined insulations of MLI(Multi-Layer Insulation) and VCS(Vapor-Cooled Shield) under high vacuum are considered in the analysis for various volumes of vessels. Vapor-Cooled Shields(VCS) are installed at cylinder wall as well as disc side of the $LH_2$ vessels. The results indicate that optimal distribution of boiloff vapor from $LH_2$ vessel into two sides of VCS exists based on the evaporation loss. As the volume of $LH_2$ vessel is increased, mass flow rate of boiloff is increased while the evaporation loss per unit volume is decreased.

Oxygen Transport in Highly Boron Doped Silicon Melt

  • Terashima, K.;Abe, K.;Maeda, S.;Nakanishi, H.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.207-209
    • /
    • 1997
  • Influences of boron addition on the oxygen solubiligy in silicon melt and the amount of evaporation loss from the melt surface were investigated. It has been found the oxygen concentration increases from 2${\times}$1018 to 4${\times}$1018 atoms/㎤. The amount of evaporation loss was found to vary widely depending on the melt temperature. The amount of SiO evaporating form boron doped (∼102121 atoms/㎤) silicon melt at 1550$^{\circ}C$ is about twice as much as the value of non-doped melt.

  • PDF

유역내 네가지 강수손실 성분들의 합성 (Combining Four Elements of Precipitation Loss in a Watershed)

  • 유주환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

증발억제법에 의한 수온 및 지온상승효과에 관한 연구

  • 김광식
    • 물과 미래
    • /
    • 제5권2호
    • /
    • pp.6-16
    • /
    • 1972
  • It has been well studied and known that the yields from the rice fields irrigated by the cold water such as the water directly flowing in from mountain valleies, underground water and subground water are largely influenced by the water temperature. However, the best method of raising water temperature has not yet been established. This is because there are some essentially difficult problems associated. When we examine the effects of $1^{\circ}C$ rise in the water temperature under natural condition on rice growing, the necessity of this line of study is verified. The results of Mihara's study show that rice bears its fruits at the water temperature above $19^{\circ}C$ and the difference of $1^{\circ}C$ in the range of $19^{\circ}C$ to $22^{\circ}C$ can produce the 20% of difference in yields. Because of these facts, most farmers have made use of water temperature raising ponds, zigzag waterways and shelter belts. But the most important factor in raising water temperature has been found to be the heat loss due to evaporation. Recently, a good deal of experiment on raising water temperature and soil temperature by reducing the evaporation are being carried out all over the world. The reduction of evaporation does not only reduce heat loss, from the surface but also reduce the loss of water. Present study is aimed to determine the efficiency of different chemicals by which monomolecular films are formed over different surfaces such as water surface, soil surface and the surface of plant leaves with a purpose of preventing the transpiration, and aimed to observe the effects of the temperature rise and its influence on growing state as well as the durability of the plants under drought condition.

  • PDF

Oxidative Degradation of a Drug during the Course of Diffusion Across the Skin

  • Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.637-642
    • /
    • 1997
  • Degradation of a compound with a hydroxyl group during the course of its diffusion across the skin was investigated. Based on the experimental findings of ashortened retention time of a degradant peak from post-diffusion samples and from the ability to evaporate radioactivity from such samples, it seems that during diffusion the parent compound degrades into a more hydrophilic product which is then oxidized. A tritium label at the carbon with a hydroxyl group was released as a tritiated water. When the post-diffusion samples were left open to the air allowing evaporation of water, there was a corresponding decrease in radioactivity of such samples. There was a linear relationship between the time left open and the fraction of radioactivity lost. When such samples were fractionated by HPLC, and then had their radioactivities measured by scintillation counting, two peaks wre identified. The first peak, which may be attributable to tritiated water, was eluted at the same retention time as the solvent front. The second peak eluted at the retention time of the parent compound. When the evaporation/loss of radioactivity experiment was repeated using a $^{14}C$-labeled compound there was no significant loss of radioactivity, indicating that the earlier loss with $^{3}H$-labeled compound was related to the formation and loas sof tritiated water.

  • PDF

Sublimation and high-temperature stability of SnO2-doped Bi2O3 ionic materials in controlled atmosphere

  • Cheng, Yu-Hung;Chen, Yen-Yu;Wei, Wen-Cheng J.
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.388-393
    • /
    • 2018
  • Sublimation of $Bi_2O_3$-based materials is an important degradation issue for the long-term applications of many electronic devices. A series of $SnO_2$-doped $Bi_2O_3$ materials (SBO), was synthesized, densified, and then tested in air or strong reducing atmosphere. The $SnO_2$-doping effects and sublimation kinetics of the SBO materials were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and precise mass loss measurement. The results show that formation of $Bi_2Sn_2O_7$ phase greatly retards the mass loss of SBO. The SBO samples show a surface sublimation in an energy of $52.6kJ{\cdot}mol^{-1}$. However, the sublimation is also controlled by surface microstructure as the amount of vaporizing species (the Bi or gaseous Bi-oxides) is more than 0.1 mass%. The evaporation is retarded on the rough surface and the mechanism of surface evaporation is changed to diffusional control.

현장 측정을 통한 관개용수로의 손실량 추정 (Estimation of Water Loss in Irrigation Canals through Field Measurement)

  • 이용직;김필식;김선주;지용근;주욱종
    • 한국농공학회논문집
    • /
    • 제50권1호
    • /
    • pp.13-21
    • /
    • 2008
  • Water losses in irrigation canals are mainly estimated as the sum of conveyance and delivery water loss. The losses occur via the evaporation, infiltration, gate operation and water distribution processing. Recently, the study regarding these water losses are not satisfactory enough, also delivery water loss has not been mainly considered on field design. The objective of this study is to investigate and analyze the volume of water loss in irrigation canals considering condition of actual farm land. A field measurement was performed at four research sites, which are managed by Korea Rural Community & Agriculture Corporation, to evaluate conveyance and delivery water loss for 2 years. The measurement was performed by canal type, size and designed flow using the inflow-outflow method at a major points such as start and end of each canal, derivation point of canal and inlet of paddy fields. Results of this study showed that water loss ratio in lateral canals was bigger than that of main canal unlike current design standard and the loss decrease as flow increase. The total of water loss ratio including conveyance and delivery water loss in several irrigation canals ranged between 33.25 and 45.0%.

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

기판의 표면거칠기와 반사경 산란에 대한 연구 (Effect of surface roughness onto the scattering in low loss mirrors)

  • 조현주;신명진;이재철
    • 한국광학회지
    • /
    • 제13권3호
    • /
    • pp.209-214
    • /
    • 2002
  • 기판의 표면거칠기가 반사경의 산란에 미치는 영향을 조사하였다. 기판의 표면거칠기가 다른 다섯 종류의 기판에 이온빔 스퍼터링 방법과 전자총 증착 방법으로 각각 반사율이 1에 가까운 고반사율 박막을 증착하고 산란을 TIS 방법으로 측정하였다. 기판의 표면거칠기가 2$\AA$ 이상인 경우의 기판의 산란에 대한 반사경 산란 비율은 표면거칠기가 2$\AA$ 미만인 경우의 산란 비율에 비하여 급격한 증가를 나타냄을 알 수 있었으며, 기판의 표면거칠기가 낮은 경우 반사경의 산란은 기판의 표면거칠기보다 반사경을 구성하는 박막의 미세구조에 의존하는 것으로 판단되었다. 한편 반사경 중에서 가장 작은 산란은 2.1 ppm이었고, 이것은 표면거칠기 0.23$\AA$인 기판에 이온빔 스퍼터링 방법으로 제작되었다.